Math 223a: Algebraic Number Theory Fall 2020

Problem set #8

due Friday, October 30 at 10:30am

Problem 1. Let L|K be a finite field extension with Galois group $\operatorname{Gal}(L|K) \cong \mathbb{Z}/n\mathbb{Z}$ generated by σ .

- a) Let $a \in L$. Show that there exists some $b \in L$ such that $a = b \sigma(b)$ if and only if $\operatorname{Tr}_{L|K}(a) = 0$. (Additive Hilbert 90)
- b) Assume that char K = n = p. Show that $L = K(\alpha)$ for a root α of $X^p X t$ for some $t \in K$. (Artin-Schreier theory)
- **Problem 2.** a) Let $n \ge 1$ and let K be any field containing n distinct n-th roots of unity. Let $a \in K^{\times}$. Show that the field extension $K(\sqrt[n]{a})|K$ has degree n if and only if $a \notin K^{\times p}$ for all prime numbers p dividing n.
 - b) Let p by a prime number and let K be any field of characteristic char $K \neq p$. Let $a \in K^{\times}$. Show that the polynomial $X^p a \in K[X]$ is irreducible if and only if $a \notin K^{\times p}$.
 - c) Find a number $a \in \mathbb{Q}^{\times}$ such that the polynomial $X^4 a \in \mathbb{Q}[X]$ is not irreducible although $a \notin \mathbb{Q}^{\times 2}$.

Problem 3. Denote by $(\cdot, \cdot)_2$ the Hilbert symbol for $K = \mathbb{Q}_2$ and n = 2. Show that

$$(2^s \cdot a, 2^t \cdot b) = (-1)^{s \cdot \frac{b^2 - 1}{8} + t \cdot \frac{a^2 - 1}{8} + \frac{a - 1}{2} \cdot \frac{b - 1}{2}}$$

for all $a, b \in \mathbb{Z}_2^{\times}$ and $s, t \in \mathbb{Z}$.

Problem 4. Show that an element x of \mathbb{Q}_3^{\times} can be written as

$$x = a^{4} - 4a^{2}b^{2} + 4b^{4} - 6a^{2}c^{2} - 12b^{2}c^{2} + 9c^{4} + 48abcd - 12a^{2}d^{2} - 24b^{2}d^{2} - 36c^{2}d^{2} + 36d^{4}d^{2} - 36c^{2}d^{2} + 36d^{4}d^{2} - 36c^{2}d^{2} + 36d^{4}d^{2} - 36c^{2}d^{2} + 36d^{4}d^{2} - 36c^{2}d^{2} - 36c^{2}d^{2}$$

with $a, b, c, d \in \mathbb{Q}_3$ if and only if $x \in \mathbb{Q}_3^{\times 2}$. (You may use a computer algebra system.)