Math 223a: Algebraic Number Theory

 Fall 2020Problem set \#8
due Friday, October 30 at 10:30am

Problem 1. Let $L \mid K$ be a finite field extension with Galois group $\operatorname{Gal}(L \mid K) \cong$ $\mathbb{Z} / n \mathbb{Z}$ generated by σ.
a) Let $a \in L$. Show that there exists some $b \in L$ such that $a=b-\sigma(b)$ if and only if $\operatorname{Tr}_{L \mid K}(a)=0$. (Additive Hilbert 90)
b) Assume that char $K=n=p$. Show that $L=K(\alpha)$ for a root α of $X^{p}-X-t$ for some $t \in K$. (Artin-Schreier theory)

Problem 2. a) Let $n \geqslant 1$ and let K be any field containing n distinct n th roots of unity. Let $a \in K^{\times}$. Show that the field extension $K(\sqrt[n]{a}) \mid K$ has degree n if and only if $a \notin K^{\times p}$ for all prime numbers p dividing n.
b) Let p by a prime number and let K be any field of characteristic char $K \neq p$. Let $a \in K^{\times}$. Show that the polynomial $X^{p}-a \in K[X]$ is irreducible if and only if $a \notin K^{\times p}$.
c) Find a number $a \in \mathbb{Q}^{\times}$such that the polynomial $X^{4}-a \in \mathbb{Q}[X]$ is not irreducible although $a \notin \mathbb{Q}^{\times 2}$.

Problem 3. Denote by $(\cdot, \cdot)_{2}$ the Hilbert symbol for $K=\mathbb{Q}_{2}$ and $n=2$. Show that

$$
\left(2^{s} \cdot a, 2^{t} \cdot b\right)=(-1)^{s \cdot \frac{b^{2}-1}{8}+t \cdot \frac{a^{2}-1}{8}+\frac{a-1}{2} \cdot \frac{b-1}{2}}
$$

for all $a, b \in \mathbb{Z}_{2}^{\times}$and $s, t \in \mathbb{Z}$.
Problem 4. Show that an element x of \mathbb{Q}_{3}^{\times}can be written as
$x=a^{4}-4 a^{2} b^{2}+4 b^{4}-6 a^{2} c^{2}-12 b^{2} c^{2}+9 c^{4}+48 a b c d-12 a^{2} d^{2}-24 b^{2} d^{2}-36 c^{2} d^{2}+36 d^{4}$
with $a, b, c, d \in \mathbb{Q}_{3}$ if and only if $x \in \mathbb{Q}_{3}^{\times 2}$. (You may use a computer algebra system.)

