Math 223a: Algebraic Number Theory

 Fall 2020Problem set \#3
due Friday, September 25 at 10:30am

Problem 1. a) Show that every subgroup H of \mathbb{Z}_{p}^{\times}of finite index is open.
b) Show that every subgroup H of \mathbb{Q}_{p}^{\times}of finite index is open.

Problem 2. Let K be a local field with residue field \mathbb{F}_{q}. Show that K has exactly one unramified extension of any degree $n \geqslant 1$, namely the field L obtained by adjoining all ($q^{n}-1$)-th roots of unity.

Problem 3. Let K be complete with respect to a discrete valuation v. Let $f_{1}, \ldots, f_{n} \in \mathcal{O}_{v}\left[X_{1}, \ldots, X_{n}\right]$ be n polynomials in n variables. Assume that $\bar{\alpha}=\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n}\right) \in \kappa_{v}^{n}$ is a root of each $f_{i} \bmod \mathfrak{p}_{v}$, but not a root of the Jacobian determinant $\operatorname{det}\left(\frac{\partial f_{i}}{\partial X_{j}}\right)_{i, j} \bmod \mathfrak{p}_{v}$. Then, there is exactly one common root $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathcal{O}_{v}^{n}$ of all f_{1}, \ldots, f_{n} such that $\alpha \equiv \bar{\alpha}$ $\bmod \mathfrak{p}_{v}$.
Problem 4. Fix a prime number $p>2$ and let

$$
f(X, Y)=\sum_{\substack{i, j>0: \\ i+j \leqslant p-2}} X^{i} Y^{j}
$$

For which pairs $(a, b) \in \mathbb{R} \times \mathbb{R}$ does there exist a pair $(x, y) \in \mathbb{Q}_{p}^{\times} \times \mathbb{Q}_{p}^{\times}$ satisfying

$$
f(p x, p y)=f\left(p x^{-1}, p y^{-1}\right)=0
$$

with $v_{p}(x)=a$ and $v_{p}(y)=b$?
Problem 5. Let the field K be complete with respect to the normalized discrete valuation v. Let $f\left(X_{1}, \ldots, X_{n}\right) \in K\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial. Let $w_{1}, \ldots, w_{n} \in \mathbb{Q}$. To any monomial $M=c \cdot X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}$ in f, associate the number $u(M)=v(c)+a_{1} w_{1}+\cdots+a_{n} w_{n}$. Assume that $u(M) \geqslant 0$ for all monomials M in f and that $u(M)=0$ for at least two monomials M in f. Show that there exist $x_{1}, \ldots, x_{n} \in \bar{K}^{\times}$with valuations $v\left(x_{i}\right)=w_{i}$ (for all i) that satisfy $f\left(x_{1}, \ldots, x_{n}\right)=0$.

