Math 223a: Algebraic Number Theory Fall 2020

Problem set #2

due Friday, September 18 at 10:30am

Problem 1. Let K be a nonarchimedean local field with residue field $\kappa_K = \mathbb{F}_q$. Show that K contains q - 1 distinct (q - 1)-st roots of unity.

Problem 2. Show that the equation $(x^2 + 1)(x^2 + 17)(x^2 - 17) = 0$ doesn't satisfy the local-global principle over \mathbb{Z} : It has a solution in \mathbb{Z}_p for each p and a solution in \mathbb{R} , but no solution in \mathbb{Z} . (For p = 2, wait until the Monday lecture if necessary.)

Problem 3. Let K be a local field with residue field \mathbb{F}_q .

- a) Equip \mathbb{Z} with the discrete topology. Show that the map $\mathcal{O}_K^{\times} \times \mathbb{Z} \to K^{\times}$ sending (x, n) to $x \cdot \pi_K^n$ is a group isomorphism and a homeomorphism.
- b) Let $\mu_{q-1} \subset K$ be the group of (q-1)-st roots of unity. Show that the map $\mu_{q-1} \times U^{(1)} \to \mathcal{O}_K^{\times}$ sending (x, y) to xy is a group isomorphism and a homeomorphism.

Problem 4. We call a sequence $(a_0, a_1, ...)$ preperiodic if there exist $n \ge 0$ and $k \ge 1$ such that $a_i = a_{i+k}$ for all $i \ge n$. Write a number $x \in \mathbb{Q}_p$ as $x = p^r \cdot \sum_{i=0}^{\infty} a_i p^i$ with digits $a_0, a_1, \dots \in \{0, \dots, p-1\}$. Show that the digit sequence (a_0, a_1, \dots) is preperiodic if and only if $x \in \mathbb{Q}$.

Problem 5. Let K be a field of characteristic zero which is complete with respect to the discrete valuation v. Assume that the residue field κ_v has characteristic $p \neq 0$.

a) Show that for $x \in K$, the series

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges if and only if $v(x) > \frac{v(p)}{p-1}$.

b) Show that for $x \in K$, the series

$$\log\left(\frac{1}{1-x}\right) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

converges if and only if v(x) > 0.