Math 223a: Algebraic Number Theory Fall 2020

Problem set #12

due Monday, November 30 at 10:30am

Problem 1. Let L|K be a finite Galois extension of nonarchimedean local fields with Galois group G and ramification index e. Show that $H^1(G, \mathcal{O}_L^{\times})$ is isomorphic to $\mathbb{Z}/e\mathbb{Z}$. (Hint: Use Hilbert 90.)

Problem 2. Give an example of a finite Galois extension $K|\mathbb{Q}$ of number fields such that \mathcal{O}_K does not have a normal \mathbb{Z} -basis: There is no $x \in \mathcal{O}_L$ such that $(g(x))_{g \in \text{Gal}(L|K)}$ forms a \mathbb{Z} -module basis of \mathcal{O}_L .

Problem 3. Prove the normal basis theorem for finite fields: Any extension $\mathbb{F}_{q^n}|\mathbb{F}_q$ of finite fields has a basis of the form $\{g(x) \mid g \in \operatorname{Gal}(\mathbb{F}_{q^n}|\mathbb{F}_q)\}$ with $x \in \mathbb{F}_{q^n}$. (Hint: Make \mathbb{F}_{q^n} a $\mathbb{Z}[T]$ -module by letting $T.x = x^q$ for $x \in \mathbb{F}_q$. Apply the fundamental theorem of finitely generated modules over principal ideal domains.)

Let G be a finite group and let K be a field with trivial G-action. The abelian groups $H^i(G, K)$ have a canonical K-vector space structure: simply apply the cohomology functor $H^i(G, -)$ to the scalar multiplication maps on K to obtain the scalar multiplication maps on $H^i(G, K)$.

Problem 4. Show that each of the vector spaces $H^i(G, K)$ $(i \ge 0)$ is finitedimensional.

Problem 5 (bonus). Let G_1 and G_2 be finite groups and let K be a field with trivial G-action. Construct an isomorphism of K-vector spaces

$$H^{n}(G_{1} \times G_{2}, K) \cong \sum_{i+j=n} H^{i}(G_{1}, K) \otimes_{K} H^{j}(G_{2}, K).$$

(This is called the Künneth formula.)

Problem 6 (bonus). Let $G = (\mathbb{Z}/2\mathbb{Z})^k$ for $k \ge 1$. Compute the dimension of $H^i(G, \mathbb{F}_2)$ as an \mathbb{F}_2 -vector space for all $i \ge 0$.