Math 223a: Algebraic Number Theory Fall 2020

Problem set #1

due Friday, September 11 at 10:30am

Problem 1. Let $n \ge 1$ and $a \in \mathbb{Z}$. Show that the equation $x^n = a$ has a solution x in \mathbb{Z} if and only if it has a solution in \mathbb{R} and a solution in \mathbb{Z}_p for all primes p. (Hence, the equation $x^n = a$ satisfies the local-global principle.)

Problem 2. Consider the number field $K = \mathbb{Q}(\sqrt{-5})$.

- a) Show that the ideal (2) of K ramifies: $(2) = \mathfrak{p}^2$ for some prime ideal \mathfrak{p} .
- b) Show that \mathfrak{p} is not a principal ideal.
- c) Find a generator of the maximal ideal of the localization of \mathcal{O}_K at \mathfrak{p} .

Problem 3. Consider a nonzero element a of a finite field \mathbb{F}_q and any integer $n \ge 1$. Show that $a = x^n$ for some $x \in \mathbb{F}_q$ if and only if $a^{(q-1)/\gcd(q-1,n)} = 1$. (Hint: Use that the group \mathbb{F}_q^{\times} is cyclic.)

Problem 4. Let *L* be a Galois extension of \mathbb{Q} with Galois group S_3 . Let K_3 be the degree 3 extension of \mathbb{Q} fixed by $\langle (2 \ 3) \rangle \subset S_3$. Let K_2 be the degree 2 extension fixed by $\langle (1 \ 2 \ 3) \rangle \subset S_3$. Show that no prime *p* of \mathbb{Q} is inert in both K_3 and K_2 .

Problem 5. Consider any polynomial $f(X_1, \ldots, X_n) \in \mathbb{Z}[X_1, \ldots, X_n]$ and any prime number p. Assume that for all $k \ge 0$, there exist $x_1, \ldots, x_n \in \mathbb{Z}$ such that $f(x_1, \ldots, x_n) \equiv 0 \mod p^k$. Show that there exist $y_1, \ldots, y_n \in \mathbb{Z}_p$ such that $f(y_1, \ldots, y_n) = 0$.