Math 223a: Algebraic Number Theory Fall 2019

Homework \#9
due Tuesday, November 12 at noon

Problem 1. Let G be a finite cyclic group generated by σ. Show that the following sequence is exact, where $\varepsilon: \mathbb{Z}[G] \rightarrow \mathbb{Z}$ is the map sending $\sum_{g \in G} a_{g} g$ to $\sum_{g \in G} a_{g}$ and we denote the multiplication by $\sigma-1$ map on $\mathbb{Z}[G]$ by $\sigma-1$ and the multiplication by $N=\sum_{g \in G} g$ map on $\mathbb{Z}[G]$ by N :

Problem 2. Let G be a finite cyclic group of order n and let A be an abelian group with trivial G-action. Show that $H^{0}(G, A)=A, H^{i}(G, A)=\{a \in A \mid$ $n a=0\}$ for odd $i \geqslant 1$, and $H^{i}(G, A)=A / n A$ for even $i \geqslant 2$.
Problem 3. Let G be a finite group and A an abelian group with trivial G-action. Show that $H^{1}(G, A)$ is isomorphic to $\operatorname{Hom}_{\text {grp }}(G, A)$, the group of group homomorphisms $G \rightarrow A$ (with addition given by $\left(f_{1}+f_{2}\right)(g)=$ $\left.f_{1}(g)+f_{2}(g)\right)$.

Let G be a finite group and let K be a field with trivial G-action. The abelian groups $H^{i}(G, K)$ have a canonical K-vector space structure: simply apply the cohomology functor $H^{i}(G,-)$ to the scalar multiplication maps on K to obtain the scalar multiplication maps on $H^{i}(G, K)$.

Problem 4. Show that each of the vector spaces $H^{i}(G, K)(i \geqslant 0)$ is finitedimensional.

Problem 5 (bonus). Let G_{1} and G_{2} be finite groups and let K be a field with trivial G-action. Construct an isomorphism of K-vector spaces

$$
H^{n}\left(G_{1} \times G_{2}, K\right) \cong \sum_{i+j=n} H^{i}\left(G_{1}, K\right) \otimes_{K} H^{j}\left(G_{2}, K\right)
$$

(This is called the Künneth formula.)
Problem 6. Let $G=(\mathbb{Z} / 2 \mathbb{Z})^{k}$ for $k \geqslant 1$. Compute the dimension of $H^{i}\left(G, \mathbb{F}_{2}\right)$ as an \mathbb{F}_{2}-vector space for all $i \geqslant 0$. (You may use the result from the bonus problem.)

