Math 223a: Algebraic Number Theory Fall 2019

Homework \#8

due Tuesday, November 5 at noon

Problem 1. Let $L \mid K$ be a finite field extension with Galois group $\operatorname{Gal}(L \mid K) \cong$ $\mathbb{Z} / n \mathbb{Z}$ generated by σ.
a) Let $a \in L$. Show that there exists some $b \in L$ such that $a=b-\sigma(b)$ if and only if $\operatorname{Tr}_{L \mid K}(a)=0$. (Additive Hilbert 90)
b) Assume K is a local field. Show that there exists some integer $n \geqslant 0$ such that the following holds for all $a \in \mathfrak{p}_{K}^{n}$: There exists some $b \in \mathcal{O}_{L}$ such that $a=b-\sigma(b)$ if and only if $\operatorname{Tr}_{L \mid K}(a)=0$. (Integral additive Hilbert 90)

Problem 2. Let $(a, b)=\left(\frac{a, b}{(2)}\right)_{2}$ be the Hilbert symbol for $K=\mathbb{Q}_{2}$ and $n=2$. Show that

$$
\left(2^{s} \cdot a, 2^{t} \cdot b\right)=(-1)^{s \cdot \frac{b^{2}-1}{8}+t \cdot \frac{a^{2}-1}{8}+\frac{a-1}{2} \cdot \frac{b-1}{2}}
$$

for all $a, b \in \mathbb{Z}_{2}^{\times}$and $s, t \in \mathbb{Z}$.
Problem 3. a) Is there a field extension $L \mid \mathbb{Q}$ with a basis (α, β, γ) such that $N_{L \mid \mathbb{Q}}(\alpha a+\beta b+\gamma c)=a^{3}+7 b^{3}+49 c^{3}-21 a b c$ for all $a, b, c \in \mathbb{Q} ?$
b) Is there a field extension $L \mid \mathbb{Q}$ with a basis (α, β, γ) such that $N_{L \mid \mathbb{Q}}(\alpha a+$ $\beta b+\gamma c)=a^{3}+7 b^{3}+49 c^{3}-21 a b c+a^{2} c$ for all $a, b, c \in \mathbb{Q} ?$

Problem 4. Show that an element x of \mathbb{Q}_{3}^{\times}can be written as
$x=a^{4}-4 a^{2} b^{2}+4 b^{4}-6 a^{2} c^{2}-12 b^{2} c^{2}+9 c^{4}+48 a b c d-12 a^{2} d^{2}-24 b^{2} d^{2}-36 c^{2} d^{2}+36 d^{4}$
with $a, b, c, d \in \mathbb{Q}_{3}$ if and only if $x \in \mathbb{Q}_{3}^{\times 2}$. (You may use a computer algebra system.)

