Math 223a: Algebraic Number Theory Fall 2019

Homework #6

due Tuesday, October 22 at noon

Problem 1. Let K be a local field. Show that the field K^{ur} is not complete with respect to the discrete valuation v_K .

Problem 2. Let K be a local field with residue field \mathbb{F}_q . Let f(X) be an Eisenstein polynomial of degree q-1 with constant coefficient π_K and let $\alpha \in \overline{K}$ be a root of f(X). Consider the field $L = K(\alpha)$. Show that $\operatorname{Nm}_{L|K} L^{\times}$ is $U_K^{(1)} \cdot \pi_K^{\mathbb{Z}}$, the set of elements x of K^{\times} such that $x/\pi_K^{v_K(x)} \equiv 1$ mod \mathfrak{p}_K .

Definition. A cyclic extension L|K is a Galois extension with cyclic Galois group. A dihedral extension L|K is a Galois extension with dihedral Galois group (group of order 2n generated by τ and σ subject to the relations $\tau^n = 1, \sigma^2 = 1, \sigma\tau\sigma = \tau^{-1}$).

Problem 3. Let K be a local field with residue field \mathbb{F}_q .

- a) For which integers $n \ge 1$ does K have a totally and tamely ramified cyclic extension of degree n?
- b) For which integers $n \ge 1$ does K have a tamely ramified dihedral extension of degree 2n?

Problem 4. Let K be a local field with residue field \mathbb{F}_q of odd order q. Show that there is a Galois extension L|K with $\operatorname{Gal}(L|K) \cong \mathbb{Z}/4\mathbb{Z}$ and $I(L|K) \cong \mathbb{Z}/2\mathbb{Z}$.

Problem 5. Let $K|\mathbb{Q}_p$ be a Galois extension with Galois group \mathbb{Z}_p . Show that $I_0(K|\mathbb{Q}_p) = I_1(K|\mathbb{Q}_p)$.