Math 223a: Algebraic Number Theory Fall 2019

Homework #5

due Thursday, October 10 at noon

Problem 1. For any integer $n \ge 2$, denote by $\Phi_n(X) \in \mathbb{Z}[X]$ the *n*-th cyclotomic polynomial. Let *p* be a prime number. For which numbers $n \ge 1$ does there exists an integer *d* such that $\Phi_n(X+d)$ is an Eisenstein polynomial in $\mathbb{Q}_p[X]$?

Problem 2. Let $K \subseteq \mathbb{Q}(\zeta_{\infty})$ be a finite field extension of \mathbb{Q} . For any prime p, let $k = k_p$ be the smallest nonnegative integer such that $I^k(\mathfrak{p}|p) = 1$, where \mathfrak{p} is a prime ideal in \mathcal{O}_K dividing p. (In particular, $k_p = 0$ if and only if p is unramified.) Show that the conductor of K is $\prod_p p^{k_p}$.

Problem 3. Let $p \ge 3$ be any odd prime and let $n \ge 4$. Show that \mathbb{Q}_p doesn't have a Galois extension with Galois group S_n .

Problem 4. Let $n \ge 1$ and let K be a local field of characteristic 0. Show that K has only finitely many field extensions of degree n.