Math 223a: Algebraic Number Theory

 Fall 2019Homework \#5
due Thursday, October 10 at noon

Problem 1. For any integer $n \geqslant 2$, denote by $\Phi_{n}(X) \in \mathbb{Z}[X]$ the n-th cyclotomic polynomial. Let p be a prime number. For which numbers $n \geqslant 1$ does there exists an integer d such that $\Phi_{n}(X+d)$ is an Eisenstein polynomial in $\mathbb{Q}_{p}[X]$?

Problem 2. Let $K \subseteq \mathbb{Q}\left(\zeta_{\infty}\right)$ be a finite field extension of \mathbb{Q}. For any prime p, let $k=k_{p}$ be the smallest nonnegative integer such that $I^{k}(\mathfrak{p} \mid p)=1$, where \mathfrak{p} is a prime ideal in \mathcal{O}_{K} dividing p. (In particular, $k_{p}=0$ if and only if p is unramified.) Show that the conductor of K is $\prod_{p} p^{k_{p}}$.

Problem 3. Let $p \geqslant 3$ be any odd prime and let $n \geqslant 4$. Show that \mathbb{Q}_{p} doesn't have a Galois extension with Galois group S_{n}.

Problem 4. Let $n \geqslant 1$ and let K be a local field of characteristic 0 . Show that K has only finitely many field extensions of degree n.

