Math 223a: Algebraic Number Theory Fall 2019

Homework #4

due Thursday, October 3 at noon

Problem 1. Let L|K be an unramified extension of local fields and let $\mathbb{F}_{q^n}|\mathbb{F}_q$ be the corresponding extension of residue fields. Show that $L = K(\zeta_{q^n-1})$.

Problem 2. Let K be a local field. Equip \mathbb{Z} with the discrete topology. Show that the group isomorphism $\mathcal{O}_K^{\times} \times \mathbb{Z} \to K^{\times}$ sending (x, n) to $x\pi_K^n$ is a homeomorphism.

Definition. Let K be a local field. A polynomial $f(X) = a_n X^n + \cdots + a_0 \in K[X]$ is called an *Eisenstein polynomial* if $v_K(a_n) = 0$, $v_K(a_{n-1}) \ge 1$, ..., $v_K(a_1) \ge 1$, and $v_K(a_0) = 1$.

Problem 3. Let K be a local field with residue field $\kappa_K \cong \mathbb{F}_q$. Consider an Eisenstein polynomial $f(X) \in K[X]$ of degree q-1. Let $\alpha \in \overline{K}$ be a root of f(X) and $L = K(\alpha)$.

- a) Show that L is a Galois extension of K.
- b) What is the Galois group of L over K?

Problem 4. Let L|K be an unramified degree n extension of local fields and let $\mathbb{F}_{q^n}|\mathbb{F}_q$ be the corresponding extension of residue fields.

- a) Show that the norm map $\operatorname{Nm}_{\mathbb{F}_{q^n}|\mathbb{F}_q} : \mathbb{F}_{q^n}^{\times} \to \mathbb{F}_q^{\times}$ is surjective.
- b) Show that the trace map $\operatorname{Tr}_{\mathbb{F}_{q^n}|\mathbb{F}_q}:\mathbb{F}_{q^n}\to\mathbb{F}_q$ is surjective.
- c) Show that the norm map $\operatorname{Nm}_{L|K} : \mathcal{O}_L^{\times} \to \mathcal{O}_K^{\times}$ is surjective.
- d) Show that the image of the norm map $\operatorname{Nm}_{L|K} : L^{\times} \to K^{\times}$ is the subset $\{x \in K^{\times} \mid v_K(x) \equiv 0 \mod n\}$ of K^{\times} (which corresponds to the subset $\mathcal{O}_K^{\times} \times n\mathbb{Z}$ of $\mathcal{O}_K^{\times} \times \mathbb{Z}$).

Problem 5. Let K be a local field. Consider the projective limit

 $\varprojlim_{U \subseteq K^{\times} \text{ open subgroup of finite index}} K^{\times}/U,$

the set of tuples $(x_U)_U \in \prod_U K^{\times}/U$ such that $x_U U = x_V U$ for all $U \supseteq V$. Show that

$$\lim_{U} K^{\times}/U \cong \mathcal{O}_K^{\times} \times \widehat{\mathbb{Z}}.$$