Math 223a: Algebraic Number Theory Fall 2019

Homework \#3
due Thursday, September 26 at noon

Problem 1. Let $L \mid K$ be a finite extension of number fields. Show that the following two statements are equivalent:
a) For any two primes $\mathfrak{P}, \mathfrak{P}^{\prime}$ in \mathcal{O}_{L} with $\mathfrak{P} \cap \mathcal{O}_{K}=\mathfrak{P}^{\prime} \cap \mathcal{O}_{K}$, we have $\kappa(\mathfrak{P})=\kappa\left(\mathfrak{P}^{\prime}\right)$. ("Any two prime divisors of a prime \mathfrak{p} in \mathcal{O}_{K} have the same residue field.")
b) The field extension $L \mid K$ is a Galois extension.

Problem 2. Let K be an algebraic field extension of \mathbb{Q} of degree $n \geqslant 2$. Show that there are infinitely many prime numbers p that have no prime divisor \mathfrak{p} in \mathcal{O}_{K} with residue field $\kappa(\mathfrak{p})=\mathbb{F}_{p}$.

Problem 3. Let $K \subseteq \mathbb{Q}\left(\zeta_{\infty}\right)$ be a finite field extension of \mathbb{Q}. Show that a prime number p divides the conductor of K (smallest $n \geqslant 1$ such that $\left.K \subseteq \mathbb{Q}\left(\zeta_{n}\right)\right)$ if and only if it divides the discriminant of K.

Problem 4. a) Show that every subgroup H of \mathbb{Z}_{p}^{\times}of finite index is open.
b) Show that every subgroup H of \mathbb{Q}_{p}^{\times}of finite index is open.

Problem 5. Let K be complete with respect to a discrete valuation v. Let $f_{1}, \ldots, f_{n} \in \mathcal{O}_{v}\left[X_{1}, \ldots, X_{n}\right]$ be n polynomials in n variables. Assume that $\bar{\alpha}=\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n}\right) \in \kappa_{v}^{n}$ is a root of each $f_{i} \bmod \mathfrak{p}_{v}$, but not a root of the Jacobian determinant $\operatorname{det}\left(\frac{\partial f_{i}}{\partial X_{j}}\right)_{i, j} \bmod \mathfrak{p}_{v}$. Then, there is exactly one common root $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathcal{O}_{v}^{n}$ of all f_{1}, \ldots, f_{n} such that $\alpha \equiv \bar{\alpha}$ $\bmod \mathfrak{p}_{v}$.

