Math 223a: Algebraic Number Theory Fall 2019

Homework #3

due Thursday, September 26 at noon

Problem 1. Let L|K be a finite extension of number fields. Show that the following two statements are equivalent:

- a) For any two primes $\mathfrak{P}, \mathfrak{P}'$ in \mathcal{O}_L with $\mathfrak{P} \cap \mathcal{O}_K = \mathfrak{P}' \cap \mathcal{O}_K$, we have $\kappa(\mathfrak{P}) = \kappa(\mathfrak{P}')$. ("Any two prime divisors of a prime \mathfrak{p} in \mathcal{O}_K have the same residue field.")
- b) The field extension L|K is a Galois extension.

Problem 2. Let K be an algebraic field extension of \mathbb{Q} of degree $n \ge 2$. Show that there are infinitely many prime numbers p that have no prime divisor \mathfrak{p} in \mathcal{O}_K with residue field $\kappa(\mathfrak{p}) = \mathbb{F}_p$.

Problem 3. Let $K \subseteq \mathbb{Q}(\zeta_{\infty})$ be a finite field extension of \mathbb{Q} . Show that a prime number p divides the conductor of K (smallest $n \ge 1$ such that $K \subseteq \mathbb{Q}(\zeta_n)$) if and only if it divides the discriminant of K.

Problem 4. a) Show that every subgroup H of \mathbb{Z}_p^{\times} of finite index is open.

b) Show that every subgroup H of \mathbb{Q}_p^{\times} of finite index is open.

Problem 5. Let K be complete with respect to a discrete valuation v. Let $f_1, \ldots, f_n \in \mathcal{O}_v[X_1, \ldots, X_n]$ be n polynomials in n variables. Assume that $\overline{\alpha} = (\overline{\alpha}_1, \ldots, \overline{\alpha}_n) \in \kappa_v^n$ is a root of each $f_i \mod \mathfrak{p}_v$, but not a root of the Jacobian determinant det $\left(\frac{\partial f_i}{\partial X_j}\right)_{i,j} \mod \mathfrak{p}_v$. Then, there is exactly one common root $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathcal{O}_v^n$ of all f_1, \ldots, f_n such that $\alpha \equiv \overline{\alpha} \mod \mathfrak{p}_v$.