
Dirichlet series

Fabian Gundlach

January 25, 2019

Goal The goal of these notes is to briefly introduce the reader to the beautiful
subject of Dirichlet series. In particular, we will answer some questions of the
following form: given a (number theoretic) sequence a1, a2, . . . of nonnegative
integers, what is the asymptotic behavior of

ř

nďN an as N goes to infinity?
More precisely, we want to find a “simple” function F pNq so that

ř

nďN an „
F pNq, by which we mean

lim
NÑ8

ř

nďN an

F pNq
“ 1.

Here are just a few of the many nice results that can be shown using Dirichlet
series:

•
ř

nďN dn „ N logN if dn denotes the number of divisors of n.

•
ř

nďN σn „ CN2 for some constant C “ 0.8224 . . . if σn denotes the sum
of the divisors of n.

•
ř

nďN ∆n „ CNρ for some constants C “ 0.3181 . . . and ρ “ 1.728 . . . if
∆n denotes the number of ordered factorizations of n into any number of
factors bigger than 1.

•
ř

nďN Pn „ N
logN if Pn is 1 whenever n is a prime number and 0 otherwise.

(This is the famous prime number theorem.)

A familiarity with basic facts of complex analysis (holomorphic functions,
meromorphic functions, poles) is assumed in the later parts of these notes (the
analytic statements).

Dirichlet series In combinatorics and additive number theory, it is often
useful to associate to a sequence a0, a1, . . . of complex numbers the ordinary
generating function F pa,Xq “

ř8

n“0 anX
n, which is viewed as a formal power

series. This means that we define the usual operations (addition, multiplication,
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derivative, . . . ) on power series in the obvious way even if the power series don’t
actually converge:

F pa,Xq ` F pb,Xq “
8
ÿ

n“0

anX
n `

8
ÿ

n“0

bnX
n :“

8
ÿ

n“0

pan ` bnqX
n “ F pa` b,Xq

F pa,Xq ¨ F pb,Xq “

˜

8
ÿ

n“0

anX
n

¸

¨

˜

8
ÿ

n“0

bnX
n

¸

:“
8
ÿ

n“0

`

ÿ

x,yě0 s.t.
x`y“n

axby
˘

Xn “ F pa ˚ b,Xq

d

dX
F pa,Xq “

d

dX

8
ÿ

n“0

anX
n :“

8
ÿ

n“0

nanX
n´1 “

8
ÿ

n“0

pn` 1qan`1X
n “ F pa1, Xq

In multiplicative number theory, it is more useful to associate to a sequence
a1, a2, . . . the Dirichlet series Dpa, sq “

ř8

n“1 ann
´s. Again, we define the

usual operations on Dirichlet series in the obvious way:

Dpa, sq `Dpb, sq “ Dpa` b, sq where pa` bqn “ an ` bn

Dpa, sq ¨Dpb, sq “ Dpa ˚ b, sq where pa ˚ bqn “
ÿ

x,yě1 s.t.
x¨y“n

axby

d

ds
Dpa, sq “ Dpa1, sq where a1n “ ´an logpnq

The addition and multiplication of Dirichlet series gives them the structure of
a ring. The multiplicative identity is

1 “ Dpδ, sq where δ “ p1, 0, 0, . . . q.

A Dirichlet series Dpa, sq is invertible if and only if a1 ‰ 0.
Let us look at another very simple sequence. Its Dirichlet series is called the

Riemann zeta function:

1 “ p1, 1, . . . q ÝÑ Dp1, sq “
8
ÿ

n“1

n´s “ ζpsq
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Despite the stupidity of this sequence, its Dirichlet series is very useful. Here
are some examples of more interesting number-theoretic sequences. Note how
each of the corresponding Dirichlet series can be written just in terms of the
Riemann zeta function:

d “ 1 ˚ 1
dn “

ř

xy“n 1 ¨ 1

“ #tpx, yq : xy “ nu
“ #(pos.) divisors of n

,

/

/

.

/

/

-

ÝÑ Dpd, sq “ Dp1 ˚ 1, sq “ Dp1, sq2 “ ζpsq2

dpkq “ 1 ˚ ¨ ¨ ¨ ˚ 1
loooomoooon

k times

d
pkq
n “

ř

x1¨¨¨xk“n
1 ¨ ¨ ¨ 1

“ #
 

px1,...,xkq:
x1¨¨¨xk“n

(

,

/

/

.

/

/

-

ÝÑ Dpdpkq, sq “ Dp1 ˚ ¨ ¨ ¨ ˚ 1, sq “ Dp1, sqk “ ζpsqk

id “ p1, 2, 3, . . . q
idn “ n

*

ÝÑ Dpid, sq “
8
ÿ

n“1

n ¨ n´s “
8
ÿ

n“1

n´ps´1q “ ζps´ 1q

σ “ id ˚ 1
σn “

ř

xy“n x ¨ 1

“
ř

divisors of n

,

.

-

ÝÑ Dpσ, sq “ Dpid, sqDp1, sq “ ζps´ 1qζpsq

Complex analysis Let’s now compare the complex analysis of power series
and Dirichlet series.

Power series Dirichlet series

The points X in the complex plane
where a power series F pa,Xq “
ř

n anX
n converges are separated from

the points where it doesn’t by a circle
t| ¨ | “ rcu centered at the origin:1

• inside the circle, the power series
converges ( );

• outside the circle, the power se-
ries doesn’t converge ( );

• it might converge at some points
on the circle ( ).

The points s in the complex plane
where a Dirichlet series Dpa, sq “
ř

n ann
´s converges are separated

from the points where it doesn’t by a
vertical line t= “ σcu:

2

• to the right of the line, the
Dirichlet series converges;

• to the left of the line, the Dirich-
let series doesn’t converge;

• it might converge at some points
on the line.

A power series is holomorphic ( 1) ev-
erywhere inside its radius of conver-
gence.

A Dirichlet series is holomorphic ev-
erywhere to the right of its abscissa of
convergence.

1In general, the radius of convergence rc could be 0, meaning that the power series con-
verges only at X “ 0, or could be 8, meaning that the power series converges everywhere.

2In general, the abscissa of convergence σc could be 8, meaning that the Dirichlet se-
ries doesn’t converge anywhere, or could be ´8, meaning that the Dirichlet series converges
everywhere.
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A power series converges absolutely
(| |) inside its radius of convergence.

For Dirichlet series, the analogue state-
ment doesn’t hold. In general, there
might be a vertical line t= “ σacu sep-
arating the points of absolute conver-
gence from the others.3

But if an ě 0 for all n, the Dirichlet
series converges absolutely to the right
of σc.

Another nice feature of power series is
that they converge until they have a
perfect excuse to stop: the function
cannot be extended holomorphically to
any larger circle centered at 0.

So if the power series has a mero-
morphic continuation, for example,
there must be a pole on the circle of
convergence.

For Dirichlet series, this again fails in
general: the function might have a
holomorphic continuation to a wider
strip t= ě σc ´ εu for some ε ą 0.

But if you assume that an ě 0 for
all n, the Dirichlet series must have a
singularity at σc.

(a) Power series

0

rc

|
1
|

singularity

(b) Dirichlet series if a ě 0

σc
|

1
|

singularity

Riemann zeta function What does the Riemann zeta function ζpsq “
ř8

n“1 n
´s

look like? It is easy to see that ζpsq converges absolutely for <psq ą 1 and
doesn’t converge for s “ 1 (which in fact means it never converges if <psq ă 1).
Repeatedly integrating by parts, you can find a meromorphic continuation to
the entire complex plane. There is only a simple pole at s “ 1 with residue 1.

Since we can writeDp1, sq “ ζpsq, Dpd, sq “ ζpsq2, Dpdpkq, sq “ ζpsqk, Dpσ, sq “
ζps´1qζpsq all in terms of the Riemann zeta function, they can be meromorphi-
cally extended to the entire complex plane and we know their poles. But then

3pσc ď σac ď σc ` 1q
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(since the sequences are nonnegative), we even know their respective abscissas
of convergence: the series will converge until it “hits” the rightmost pole. This
pole will be the abscissa of convergence.

Asymptotics for power series How can we make use of complex analysis
of F pa,Xq to study the sequence a? Assume we know the radius of convergence

rc. In terms of the coefficients, rc “ lim infnÑ8
n
a

|an|
´1

. This produces the
upper bound |an| ď pr´1

c ` εqn for all ε ą 0 and sufficiently large n. If we
can find a nice sequence b0, b1, . . . such that the radius of convergence r1c of
F pa ´ b,Xq is larger, we can get a (better) upper bound for the difference of
the two sequences: |an ´ bn| ď pr

1´1
c ` εqn.

For example, say F pa,Xq can be meromorphically continued to a circle of
radius r1c ą rc and the continuation is holomorphic inside this circle except for a
simple pole at X “ z0 with residue R (with |z0| “ rc). Then, F pa,Xq´ R

X´z0
is

holomorphic inside the circle of radius r1c. But we can write R
X´z0

“ ´
R{z0

1´X{z0
“

ř8

n“0´
R
z0

´

X
z0

¯n

“ F pb,Xq with bn “ ´R{zn`1
0 . We conclude that an “

´R{zn`1
0 `Opr1´1

c ` εqn for all ε ą 0. Note that (for small ε and large n) the
error term is smaller than the main term.

To summarize, the main term of the asymptotics of an comes from singu-
larities of F pa,Xq close to the origin. The further away the other singularities
are, the smaller the error term.

Asymptotics for Dirichlet series Here is a theorem of a similar spirit con-
cerning Dirichlet series:

Theorem 1 (Wiener–Ikehara). Assume an ě 0 for all n and σc ą 0 and that
ϕpsq “ ps´ σcq

kDpa, sq has a holomorphic continuation to (a neighborhood of)
t< ě σcu with ϕpσcq ‰ 0. Then

ÿ

nďN

an „
ϕpσcq

σcpk ´ 1q!
Nσc logk´1N.

Let’s apply this theorem to find asymptotics for the sequences we’ve seen
before. We just need to find the rightmost pole σc of Dpa, sq, its order k and
its coefficient ϕpσcq.

1 ÝÑ ζpsq ÝÑ simple pole at 1, coefficient 1

ÝÑ
ÿ

nďN

1 „ N

So the number of positive integers up to N is asymptotically roughly N . —
Exciting, isn’t it?
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Let’s see what happens for the other sequences:

d ÝÑ ζpsq2 ÝÑ double pole at 1, coefficient 1

ÝÑ
ÿ

nďN

dn „ N logN

dpkq ÝÑ ζpsqk ÝÑ order k pole at 1, coefficient 1

ÝÑ
ÿ

nďN

dpkqn „
1

pk ´ 1q!
N logk´1N

σ ÝÑ ζps´ 1qζpsq ÝÑ simple pole at 2, coefficient ζp2q

ÝÑ
ÿ

nďN

σn „
ζp2q

2
N2

These results can be easily shown directly without the use of Dirichlet series
(and we can even get a nice error bound). 4

Ordered factorizations Here is a simple sequence whose asymptotics can be
analyzed substantially more easily using Dirichlet series.

Let ∆n “ tpx1, . . . , xkq : k ě 0, x1, . . . , xk ě 2, x1 ¨ ¨ ¨xk “ nu be the
number of ordered factorizations of n into integers bigger than 1. Note that the
number of factors is not fixed. 5

We can write

∆n “

8
ÿ

k“0

ÿ

x1,...,xkě2:
x1¨¨¨xk“n

1 “
8
ÿ

k“0

ÿ

x1,...,xkě1:
x1¨¨¨xk“n

p1´ δx1
q ¨ ¨ ¨ p1´ δxk

q.

This translates to

∆ “

8
ÿ

k“0

p1´ δq ˚ ¨ ¨ ¨ ˚ p1´ δq
loooooooooooomoooooooooooon

k times

,

so

Dp∆, sq “
8
ÿ

k“0

Dp1´ δ, sqk “
8
ÿ

k“0

pζpsq ´ 1qk “
1

1´ pζpsq ´ 1q
“

1

2´ ζpsq
.

4For example,

ÿ

nďN

σn “
ÿ

nďN

ÿ

ab“n

a “
ÿ

abďN

a “
ÿ

bďN

ÿ

aďtN{bu

a “
ÿ

bďN

1

2

ˆ

N

b
`Op1q

˙2

“
ÿ

bďN

ˆ

N2

2b2
`O

ˆ

N

b

˙˙

“

řN
b“1 b

´2

2
N2 `OpN logNq “

ζp2q

2
N2 `OpN logNq.

5This sequence’s asymptotic behavior was studied by László Kalmár in the Hungarian
article A “factorisatio numerorum” problémájáról (Matematikai és Fizikai Lapok) and in the
German article Über die mittlere Anzahl der Produktdarstellungen der Zahlen (Acta Litt. Sci.
Szeged).

6



(You can also verify this without using a summation over k by multiplying by
2´ ζpsq and using a direct bijective argument.)

The poles of Dp∆, sq are the places where ζpsq “ 2. It is clear that the
function ζpsq “

ř8

n“1 n
´s is strictly decreasing on the real interval p1,8q. On

this interval, the place ρ where the function is 2, is ρ “ 1.7286 . . .. Furthermore,
you can easily show that on each vertical line t< “ σu with σ ą 1, the function
ζpsq assumes the maximum value exactly at the intersection with the real axis,
so ρ is in fact the (unique) rightmost (simple) pole of Dp∆, sq. The Wiener–
Ikehara theorem thus tells us that

ÿ

nďN

∆n „ ´
1

ρζ 1pρq
Nρ.

Multiplicative sequences, Euler products The sequences δ, 1, d, dpkq, σ
are all multiplicative: ape11 ¨¨¨p

ek
k
“ ape11 ¨ ¨ ¨ ap

ek
k

whenever p1, . . . , pk are distinct

primes.6

For a multiplicative sequence a, we can rewrite Dpa, sq as an infinite product
(called Euler product):

Dpa, sq “
ź

p prime

8
ÿ

e“0

apep
´es “

ź

p prime

`

1` app
´s ` ap2p

´2s ` ¨ ¨ ¨
˘

.

(Try expanding this infinite product and using the uniqueness of factorizations!)
For example,

Dp1, sq “
ź

p prime

8
ÿ

e“0

p´es “
ź

p prime

p1` p´s ` p´2s ` ¨ ¨ ¨ q “
ź

p

1

1´ p´s

Dpd, sq “
ź

p prime

8
ÿ

e“0

pe` 1qp´es “
ź

p prime

p1` 2p´s ` 3p´2s ` ¨ ¨ ¨ q “
ź

p

1

p1´ p´sq2

Dpdpkq, sq “
ź

p

1

p1´ p´sqk

Dpσ, sq “
ź

p prime

8
ÿ

e“0

p1` p` ¨ ¨ ¨ ` peqp´es

“
ź

p prime

p1` p1` pqp´s ` p1` p` p2qp´2s ` ¨ ¨ ¨ q “
ź

p

1

p1´ p1´sqp1´ p´sq

The prime number theorem Let’s find an asymptotic formula for the num-
ber of primes up to N . Unfortunately, the Dirichlet series for the sequence

Pn “

#

1, n prime

0, else

6Equivalently, a1 “ 1 and anm “ anam whenever n and m are coprime.
Note that not necessarily ap2 “ a2p.
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doesn’t have a simple expression in terms of the Riemann zeta function.
But the Euler product expansions suggest a different approach. We want a

sum over primes, not a product, so it might be helpful to look at the logarithm
of ζpsq:

log ζpsq “
ÿ

p prime

log
1

1´ p´s
“

ÿ

p prime

8
ÿ

k“1

p´ks

k

In complex analysis, logarithms can be somewhat nasty: It’s impossible to define
logpsq in a neighborhood of the origin, unless you look at a branched cover of
the complex plane. Therefore, if a function fpsq has zeros, log fpsq is defined
only on a branched cover of the complex plane.

To circumvent this issue, we look at the derivative d
ds log ζpsq “ ζ1

psq
ζpsq . This

quotient is of course meromorphic everywhere in the complex plane.

ζ 1psq

ζpsq
“

d

ds
log ζpsq “

ÿ

p prime

8
ÿ

k“1

p´ log pqp´ks

Thus, we have found an expression for the Dirichlet series of the sequence

Λn “

#

log p, n “ pk for some prime p and some k ě 1,

0, else.

DpΛ, sq “ ´
ζ 1psq

ζpsq

The poles of this function are at the places where ζpsq has a pole (s “ 1) or a
zero. Already knowing that ζpsq has no zero with < ě 1 is enough to apply the
Wiener–Ikehara theorem and conclude that

ÿ

nďN

Λn „ N.

The left-hand side is clearly closely related to the number of primes up to N
and it is in fact not too hard to deduce the famous prime number theorem:7

#pprimes ď Nq „

ż N

2

dt

log t
„

N

logN
.

By analogy with asymptotics in the case of power series, you should expect that
the further away from the line t< “ 1u the zeros of ζpsq (the poles of DpΛ, sq
other than s “ 1) are, the smaller the error in this asymptotic should be. In
fact, the Riemann hypothesis states that the only zeroes of ζpsq are the negative
even integers and some (infinitely many) numbers on the line t< “ 1

2u.

7Hint:

N „
ÿ

nďN

Λn «
ÿ

nďNp1´εq

Λn ` logN
ÿ

Np1´εqănďN

Pn „ Np1´ εq ` logN
ÿ

Np1´εqănďN

Pn.
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Further reading For a deeper introduction to Dirichlet series and far more
examples, I highly recommend the book Problems in Analytic Number Theory
by M. Ram Murty.
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