

Pointwise Bound for ℓ -torsion in Class Groups

Jiuya Wang
Duke University

Harvard University, Sept 30, 2019

Class Group Problem

Question

Q : How large is class group ? ℓ -torsion of class group ?

$$\mathcal{C}_F[\ell^\infty] := \{\alpha \in \mathcal{C}_F \mid \ell \cdot \alpha = 0\}$$

Theorem (Brauer-Siegel, Minkowski)

Given an arbitrary extension F/\mathbb{Q} with degree d , we have

$$|\text{Cl}_F| = O_{\epsilon, d}(\text{Disc}(F)^{1/2+\epsilon}).$$

What do we expect ?

ℓ -torsion Conjecture

Conjecture (Cohen-Lenstra Heuristics)

Given an odd prime ℓ and $k > 0$. We have for quadratic fields

$$\lim_{X \rightarrow \infty} \frac{\sum_{F, 0 < \text{Disc}_F < X} |\text{Cl}_F[\ell]|^k}{\sum_{F, 0 < \text{Disc}_F < X} 1} = \underbrace{C_{k,\ell}}_{\text{finite}} \quad \text{Certh}$$

[PTBW, 2018]

Conjecture (ℓ -torsion Conjecture)

Given a transitive permutation subgroup $G \subset S_n$ and a prime ℓ .
Then for every G -extension F/\mathbb{Q} ,

$$|\text{Cl}_F[\ell]| = O_\epsilon(\text{Disc}(F)^\epsilon).$$

Conclusion : ℓ -torsion conj is at a coarser scale.

A Clear Dichotomy on ℓ

Theorem (Gauss)

For every quadratic extension F/\mathbb{Q} , we have

$$|\text{Cl}_F[2]| = O_\epsilon(\text{Disc}(F)^\epsilon).$$

Reason : Genus Theory. $\text{rk}_2 \text{Cl}_F[2] = \text{w}(\text{Disc}(F)) - 1$

A Clear Dichotomy on ℓ

Theorem (Gauss)

For every quadratic extension F/\mathbb{Q} , we have

$$|\text{Cl}_F[2]| = O_\epsilon(\text{Disc}(F)^\epsilon).$$

Reason : *Genus Theory*

Theorem (Klüners-W., 2020)

For every ℓ -extension F/\mathbb{Q} , we have

$\text{Gal}(\widetilde{F}/\mathbb{Q})$ is ℓ -grp $|\text{Cl}_F[\ell]| = O_\epsilon(\text{Disc}(F)^\epsilon).$

Upper Bound Type Conjectures

There are also other upper bound conjectures in arithmetic statistics :

- number of number fields with fixed discriminant
(Discriminant multiplicity conjecture)
- number of number fields with bounded discriminant
(Weak Malle's conjecture)
- number of elliptic curves with fixed conductor
- rank of $\text{Jac}(C)$ for hyper-elliptic curves C

Consequence : both conjectures hold for nilpotent extensions.

Modern Result : Small ℓ

Status : when there is no genus theory, we are still trying to break the trivial bound. $|\mathcal{C}\ell_F[\ell]| \leq |\mathcal{C}\ell_F| = O_\varepsilon(D_F^{\frac{1}{2}+\varepsilon})$

Definition

We will say a bound in the form of $|\mathcal{C}\ell_F[\ell]| = O(\text{Disc}(F)^{1/2-\delta})$ for any $\delta > 0$ a *non-trivial* upper bound on $\mathcal{C}\ell_F[\ell]$.

Modern Result : Small ℓ

Status : when there is no genus theory, we are still trying to break the trivial bound.

Definition

We will say a bound in the form of $|\text{Cl}_F[\ell]| = O(\text{Disc}(F)^{1/2-\delta})$ for any $\delta > 0$ a *non-trivial* upper bound on $\text{Cl}_F[\ell]$.

Theorem (Pierce 05, Helfgott-Venkatesh 06)

The size of $\text{Cl}_F[3]$ for quadratic fields over \mathbb{Q} are non-trivially bounded

Modern Result : Small ℓ

Theorem (Ellenberg-Venkatesh 07)

The size of $\text{Cl}_F[3]$ for number fields over \mathbb{Q} with $\deg \leq 4$ are non-trivially bounded.

For $\ell = 2$, we have a much more general result.

Theorem (BSTTZ, 17)

Given arbitrary $G \subset S_n$. For every G -extension F/\mathbb{Q} , we have

$$|\text{Cl}_F[2]| \leq O_{\epsilon, n}(\text{Disc}(F)^{1/2 - 1/2n + \epsilon}).$$

Modern Result : Large ℓ

For general $\ell > 3$, there are more recent results based on the following critical lemma in the work of Ellenberg-Venkatesh.

Lemma (Ellenberg-Venkatesh,07)

Given L/\mathbb{Q} , a prime ℓ , and $0 < \theta < \frac{1}{2\ell(d-1)}$, denote as ℓ becomes large.

$$M := \pi(\underbrace{\text{Disc}(L)}^{\theta}; L, e),$$

the range is arbitrarily short.

then

$$|\text{CI}_L[\ell]| \leq O_\epsilon\left(\frac{\text{Disc}(L)^{1/2+\epsilon}}{M}\right). \quad (1)$$

Difficulty : θ is too small !

If we are allowed to assume GRH,

Theorem (Lagarias-Odlyzko, 75)

Given a Galois extension L/K with Galois group G . Assuming GRH, then for every $\underline{x} \geq 2$, we have

$$|\pi(x; L/K, e) - \frac{1}{|G|} \text{Li}(x)| = O_{[L:\mathbb{Q}]}(x^{1/2} \ln(\text{Disc}(L)x)).$$

then we get

Theorem (Ellenberg-Venkatesh, 2007)

Assume GRH for Artin L-function. Then for every $\ell > 0$, and every $G \subset S_n$, there exists $\delta(\ell, G) = 1/2\ell(d-1)$ such that

$$|\text{CI}_F[\ell]| = O_\epsilon(\text{Disc}(F)^{1/2 - \delta(\ell, G) + \epsilon}).$$

Modern Result : Unconditional

If we cannot hope to give good lower bound on enumerating small split prime ideals for one single number field, we can at least hope to say that *on average* the expected lower bound on small split prime ideals holds for most number fields.

Theorem (Ellenberg-Pierce-Wood, 2016)

For arbitrary ℓ , there exists $\delta(\ell) > 0$ such that for all non- D_4 number fields with $\deg \leq 5$, we have

$$\sum_{\text{Disc}(F) < X} |\text{Cl}_F[\ell]| = O(X^{3/2 - \delta(\ell)}).$$

- *good for many applications.*

Modern Result : Unconditional

If we cannot hope to prove GRH for a single L -function, we can at least say altogether *on average* there aren't too many zeroes for a family of L -functions.

Theorem (Pierce-Turnage-Butterbaugh-Wood, 2018)

For some Galois group G with ramification constraints, almost all G -extensions L satisfies

$$|\pi(x; L, e) - \frac{1}{|G|} \frac{x}{\log x}| = O\left(\frac{x}{\log^A x}\right),$$

for some $A \geq 2$.

There are also other results along this line : Widmer (2018), An (2018), Frei-Widmer (2018, 2019), Thorner-Zaman (2019),...

Critical Input: Enumerating Number Fields.

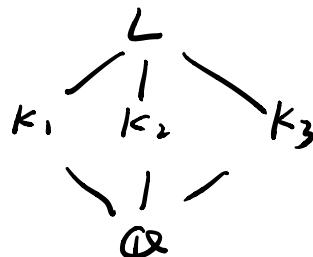
Motivation

When we look at number fields L/\mathbb{Q} containing many subfields

- Insufficiency of enumerating number fields as an input.
- No need to ask the whole Dedekind-zeta function to be zero-free.

e.g. $G = C_2 \times C_2$

$$\bullet \quad \mathfrak{Z}_L/\mathfrak{Z} = \mathfrak{Z}_{k_1}/\mathfrak{Z} \cdot \mathfrak{Z}_{k_2}/\mathfrak{Z} \cdot \mathfrak{Z}_{k_3}/\mathfrak{Z}.$$



$$\bullet \quad Cl_L[\mathfrak{e}] = Cl_{k_1}[\mathfrak{e}] \times Cl_{k_2}[\mathfrak{e}] \times Cl_{k_3}[\mathfrak{e}].$$

Galois module structure

Lemma

Given an elementary abelian group $A = (\mathbb{Z}/p\mathbb{Z})^r$ with $r > 1$ and a prime ℓ with $(\ell, p) = 1$. For arbitrary A -extension L/k , we have

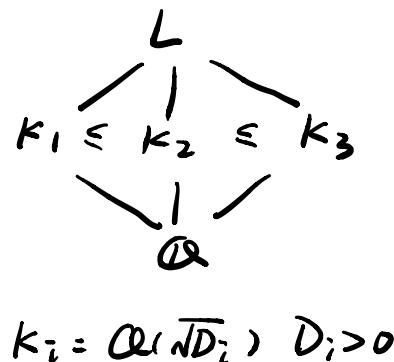
$$|\text{CI}_{L/k}[\ell]| = \prod_{K_i/k} |\text{CI}_{K_i/k}[\ell]|,$$

$$\text{Disc}(L/k) = \prod_{K_i/k} \text{Disc}(K_i/k),$$

where K_i/k ranges over all subfields of L with $[K_i : k] = p$.

Elementary Abelian Extensions

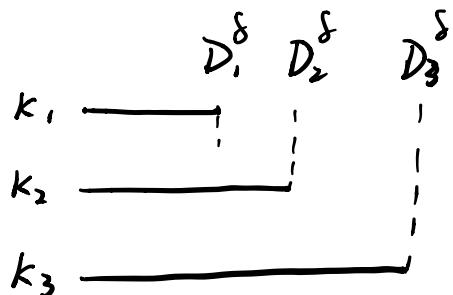
$$G = C_2 \times C_2$$



Use symmetries :

- $\text{Disc}(K_1) = QR \Rightarrow$ only K_1 can be small.
 $\text{Disc}(K_2) = RS$
 $\text{Disc}(K_3) = QS$
- $\left(\frac{P}{D_1}\right) \cdot \left(\frac{P}{D_2}\right) \cdot \left(\frac{P}{D_3}\right) = 1 \Rightarrow$ primes has to split
- $Cl_L[e] = Cl_{K_1}[e] \times Cl_{K_2}[e] \times Cl_{K_3}[e]$
 $\text{Disc}(L) = \prod_i \text{Disc}(K_i)$

A Sketch of Proof



If K_1 is big, then apply pigeon hole principle to D_1^8 .

If K_1 is small, then construct many inert primes for K , up to D_2^8 .

Existence of Large Primes

Theorem (Maynard 13, Zaman 17)

Given L/k a Galois extension of number fields with $[L : \mathbb{Q}] = d$. There exists absolute, effective constants $\gamma = \gamma(k, G) > 2$, $\beta = \beta(k, G) > 2$, $D_0 = D_0(k) > 0$ and $C = C(k) > 0$ such that if $\text{Disc}(L/k) \geq D_0$, then for $x \geq \text{Disc}(L/k)^\beta$, we have

$$\pi(x; L/k, \mathcal{C}) \geq C_k \frac{1}{\text{Disc}(L/k)^\gamma} \cdot \frac{|\mathcal{C}|}{|G|} \cdot \frac{x}{\ln x}.$$

Theorem (Brun-Titchmarsh, 73)

For $x > q$, we have

$$\pi(x; q, a) \leq \left(\frac{2}{1 - \ln q / \ln x} \right) \frac{x}{\phi(q) \ln x}.$$

Induction : High Rank

Corollary

Given an elementary abelian group $A = (\mathbb{Z}/p\mathbb{Z})^r$ with $r > 2$ and a prime ℓ such that $(\ell, p) = 1$, then we have for arbitrary A -extension L/k ,

$$\begin{aligned} |\text{Cl}_{L/k}[\ell]| &= \prod_{M_j/k} |\text{Cl}_{M_j/k}[\ell]|^{(p-1)/(p^{r-1}-1)} \\ &= \prod_{F_s/k} |\text{Cl}_{F_s/k}[\ell]|^{(p-1)/(p^{r+1-t}-1)}. \end{aligned} \tag{2}$$

where M_j/k ranges over all subfields of L with $[M_j : k] = p^2$, and F_s/k ranges all subfields of L with $[F_s : k] = p^t$.

Main Theorem

Theorem (W. 2020)

Given $A = (\mathbb{Z}/p\mathbb{Z})^r$ with arbitrary prime number p and $r > 1$ and a prime ℓ . Then for every A -extension L/\mathbb{Q} , there exists $\delta(\ell, p) > 0$ such that

$$|\text{CI}_L[\ell]| = O_\epsilon(\text{Disc}(L)^{1/2 - \delta(\ell, p) + \epsilon}).$$

Remark :

- Pointwise ✓
- Insensitive to base field ✓
- Break the GRH bound when r is large ✓

How to generalize

What is at the heart of the argument ?

- Galois module structure
- Galois structure !!

Heart of the Argument : we can force the existence of small split primes in K_3/K_2 via constructing large inert primes in K_1 .

Forcing Extensions

To generalize this idea *vertically*, we define the following type of group extensions.

Definition (Forcing Extension)

We say that a group extension (\tilde{G}, π) of G

$$0 \rightarrow H \rightarrow \tilde{G} \rightarrow G \rightarrow 0$$

is *forcing* if there exists a conjugacy class $\mathcal{C} \subset G$ such that for every element $c \in \mathcal{C}$, all elements in $\pi^{-1}(c) \subset \tilde{G}$ has the same order with $c \in G$. We will also say that (\tilde{G}, π) is *forcing with respect to \mathcal{C}* .

Inductive Argument

For an arbitrary integer $\ell > 1$, we denote $\mathcal{G}(\ell)$ to be the set of permutation Galois groups G where $|\text{CI}_F[\ell]|$ is non-trivially bounded for every G -extension F/k .

Lemma (W. 2020)

Suppose the regular representation of G is in $\mathcal{G}(\ell)$. If a group extension (\tilde{G}, π) of G

$$0 \rightarrow H \rightarrow \tilde{G} \xrightarrow{\pi} G \rightarrow 0$$

is a forcing extension with respect to \mathcal{C} , then the regular representation \tilde{G} is also in $\mathcal{G}_k(\ell)$.

p -Group Theory

Lemma (W. 2020)

Every non-cyclic and non-quaternion p -group G has a decreasing sequence of normal subgroups N_i :

$$G \supset \Phi(G) = N_0 \supset N_1 \supset N_2 \supset \cdots \supset N_m = e,$$

where for every $0 \leq i < m$:

1) $[N_i : N_{i+1}] = p$;

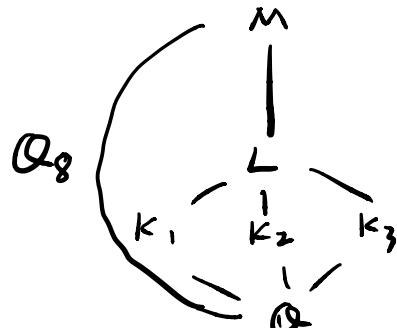
2) $(G/N_{i+1}, \pi)$ is a forcing extension of G/N_i where

$$\pi : G/N_{i+1} \rightarrow G/N_i.$$

Quaternion Groups

From the point of view of group theory, the generalized quaternion group is interesting :

- It is the only non-cyclic p -groups where all abelian subgroups are cyclic.
- It has trivial Schur multiplier.



Theorem (W. 2020)

The regular representation for every non-cyclic and non-quaternion p -group G is in $\mathcal{G}(\ell)$. More generally, if the Sylow- p subgroup G_p for a nilpotent group G is non-cyclic and non-quaternion for every $p||G|$, then the regular representation of G is in $\mathcal{G}(\ell)$.

(Bhargava - Shanker
- Taniguchi - Thorne
- Tsimerman - Zhao)

G	ℓ	$\ell = 2$	$\ell = 3$	$\ell = 5$...
(GRH)					
(Ellenberg - Venkatesh) all G		Green	Blue	Blue	
(Ellenberg - Venkatesh) $d \leq 4$		Green	Green	White	
(O.A.)					
(Ellenberg - Pierce - Wood) (Widmer) $d \leq 5$ (non D_4)		Green	Blue	Blue	
(O.A.)					
(Pierce - Turnage - Butterbaugh - Wood). (Zaman - Thorne) S_n, A_n, D_n , w/ ram conditions		Green	Blue	Blue	
		W. most p -extensions and nilpotent extensions related	Green	Green	

Thank you !