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£-torsion Conjecture Question
Heuristics and Conjectures
Genus Theory

Class Group Problem

Question
Q : How large is class group ? (- tors:on of class group 7

Theorem (Brauer-Siegel, Minkowskl)
Given an arbitrary extension F/Q with degree d, we have

| Clp | = O, g(Disc(F)'/2*e).

What do we expect ?
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£-torsion Conjecture Question
Heuristics and Conjectures
Genus Theory

(-torsion Conjecture

Conjecture (Cohen-Lenstra Heuristics)

Given an odd prime ¢ and k > 0. We have for quadratic fields
— &&P <4

V.

: ZF,O<DiscF<X ’ CIF[K]‘k
[im —
X—00 ZF,0<DiscF<X 1 finite
\((/ (PTBW , 2183

Conjecture (¢-torsion Conjecture)

Given a transitive permutation subgroup G C S, and a prime /.
Then for every G-extension F/Q,

| Clg[€]| = Oc(Disc(F)°).

Conclusion : €- torsion MJ 's at a c(oarser scale.
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£-torsion Conjecture Question
Heuristics and Conjectures
Genus Theory

A Clear Dichotomy on /

Theorem (Gauss)

For every quadratic extension F/Q, we have

| Cl[2]| = O.(Disc(F)©).

Reason: C(enus 7"4wrg, rk, U 1232 e Dise(F1 -
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£-torsion Conjecture Question
Heuristics and Conjectures
Genus Theory

A Clear Dichotomy on /

Theorem (Gauss)
For every quadratic extension F/Q, we have

| Cl[2]| = O.(Disc(F)©).

Reason : Gesus Z’éwzy
Theorem (Kliners-W.,2020)

For every (-extension F /Q, we have

F/6) s C-ar
CutsF/02 15 T8 | 01, 10) = OL(Disc(F)).

4/25



£-torsion Conjecture Question
Heuristics and Conjectures
Genus Theory

Upper Bound Type Conjectures

There are also other upper bound conjectures in arithmetic
statistics :

o number of number fields with fixed discriminant
(Discriminant multiplicity conjecture)

° number of number fields with bounded discriminant
(Weak Malle’s conjecture)

@ number of elliptic curves with fixed conductor
@ rank of Jac(C) for hyper-elliptic curves C
Consequence : both conjectures hold for nilpotent extensions.
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Modern Result : Small ¢
Modern Result : Large ¢

Previous Result

Modern Result : Small ¢

Status : when there is no genus theory, we are still trying to
break the trivial bound. /¢, zea/ < 104, ) = qu D)

Definition

We will say a bound in the form of | CIg[¢]| = O(Disc(F)'/279)
for any 6 > 0 a non-trivial upper bound on Clg[¢].
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Modern Result : Small ¢
Modern Result : Large ¢

Previous Result

Modern Result : Small ¢

Status : when there is no genus theory, we are still trying to
break the trivial bound.

Definition

We will say a bound in the form of | CIg[¢]| = O(Disc(F)'/279)
for any 6 > 0 a non-trivial upper bound on Clg[¢].

Theorem (Pierce 05, Helfgott-Venkatesh 06)

The size of Clg[3] for quadratic fields over Q are non-trivially
bounded
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Modern Result : Small ¢

Previous Result
Modern Result : Large ¢

Modern Result : Small ¢

Theorem (Ellenberg-Venkatesh 07)

The size of Clg[3] for number fields over Q with deg < 4 are
non-trivially bounded.

For ¢/ = 2, we have a much more general result.

Theorem (BSTTTZ, 17)
Given arbitrary G C Sp. For every G-extension F/Q, we have

| ClE[2]| < O p(Disc(F)'/2=1/2nte),
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Modern Result : Small 2

Previous Result
Modern Result : Large ¢

Modern Result : Large ¢

For general ¢ > 3, there are more recent results based on the
following critical lemma in the work of Ellenberg-Venkatesh.

Lemma (Ellenberg-Venkatesh,07)
Given L/Q, a prime ¢, and 0 < § < zzg—y, denote ., éeﬁé

M := 7 (Disc(L)?; L, ), the roege 0
aré)m;/;// sanT .
then s
Disc(L €
g < 025 (1)

v

Difficulty : € is oo Swmall !
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. Modern Result : Small 2
Previous Result

Modern Result : Large ¢

If we are allowed to assume GRH,

Theorem (Lagarias-Odlyzko, 75)

Given a Galois extension L/K with Galois group G. Assuming
GRH, then for every x > 2, we have

m(x; L/K, e) — |1E|Li(x)\ — Oy (x"/2 In(Disc(L)x)).

then we get

Theorem (Ellenberg-Venkatesh, 2007)

Assume GRH for Artin L-function. Then for every ¢ > 0, and
every G C Sy, there exists §(¢, G) = 1/2¢(d — 1) such that

| ClE[€]| = O.(Disc(F)1/2=o(6:G)+ey,
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Modern Result : Small ¢
Modern Result : Large ¢

Previous Result

Modern Result : Unconditional

If we cannot hope to give good lower bound on enumerating
small split prime ideals for one single number field, we can at
least hope to say that on average the expected lower bound on
small split prime ideals holds for most number fields.

Theorem (Ellenberg-Pierce-Wood, 2016)

For arbitrary ¢, there exists 6(¢) > 0 such that for all non-D,
number fields with deg < ;} we have

Y. |CE] = O(x®/20),
Disc(F)<X

. W 7‘5} mng WP/('mTt'ﬂv}-
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Modern Result : Small ¢
Modern Result : Large ¢

Previous Result

Modern Result : Unconditional

If we cannot hope to prove GRH for a single L-function, we can
at least say altogether on average there aren’t too many zeroes
for a family of L-functions.

Theorem (Pierce-Turnage-Butterbaug-Wood, 2018)
For some Galois group G with ramification constraints, almost

all G-extensions L satisfies

Y

Im(x; L, e) — — og” x

for some A > 2.

There are also other results along this line : Widmer (2018), An
(2018), Frei-Widmer (2018, 2019), Thorner-Zaman (2019),...

Gitial lnpn'fi &nmm‘t’u} Nodser— Fockdls.
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Motivation
First Example : Elementary abelian extensions
New Result Induction

Motivation

When we look at number fields L/Q containing many subfields
@ Insufficiency of enumerating number fields as an input.
@ No need to ask the whole Dedekind-zeta function to be

zero-free.
%#. ‘;: ‘:}" ‘:L ° T?L /ng = ‘1;k(/cﬁ : ‘jkﬁ/cs ._J§K5/43.
L
y o Chrtl= C, iedx<Cle el x (Ue,btd
K, Ic,»\k} 2 £ * k 3

N7
o}
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Motivation
First Example : Elementary abelian extensions
New Result Induction

Galois module structure

Lemma

Given an elementary abelian group A = (Z/pZ)" with r > 1 and
a prime ¢ with (¢, p) = 1. For arbitrary A-extension L/k, we have

| Cly k]| = H | Cli sk [4]]
Ki/k

Disc(L/k) = | [ Disc(Ki/k).

Ki/k

where K;/k ranges over all subfields of L with [K; : k] = p.
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Motivation
First Example : Elementary abelian extensions
New Result Induction

Elementary Abelian Extensions

L= Cox Ca Use  symme Tries :

L ¢ Disc(K,>z QAR => onby K, Can be swmall.
) Disc € Kiy = RS

/"45 "z £ ks
Dise k3 )= &S
\A/ 5

.—P- (L -P—-) =] = primes has To Split
(D:) D;) (Da P

© O lt]= CA, el x C{kabZ x&(ks 1t]

Disc(lr= T Dise(K:)
l

k;:= QdD;) D;>0
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Motivation
First Example : Elementary abelian extensions
New Result Induction

A Sketch of Proof

5
> ' B ok s by, He Pl
K, . . ..
o : pigeon Kde praciple o”.
“ ' ,’ If kK, is s~al, Whem  (onshrueT.
ks /

many et Primes fo K,
Wp o Dxfs.
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Motivation
First Example : Elementary abelian extensions
New Result Induction

Existence of Large Primes

Theorem (Maynard 13, Zaman 17)

Given L/k a Galois extension of number fields with [L : Q] = d.
There exists absolute, effective constants v = v(k, G) > 2,

B = pB(k,@G) > 2, Dy = Dy(k) > 0 and C = C(k) > 0 such that if
Disc(L/k) > Dy, then for x > Disc(L/k)?, we have

r(x: L/K,C) > Cr Cl, x

Disc(L/k)Y |G| Inx’

Theorem (Brun-Titchmarsh,73)
For x > q, we have

2 X
m(X:q.8) < (1 “n q/lnx) H(q)Inx’
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Motivation
First Example : Elementary abelian extensions
New Result Induction

Induction : High Rank

Corollary

Given an elementary abelian group A = (Z/pZ)" with r > 2 and
a prime ¢ such that (¢, p) = 1, then we have for arbitrary
A-extension L/k,

[Cllal= 1] |CIMj/k[€]|(P—1)/(pf—1—1)
Mk

— H | Clg /k[g”(p—ﬂ/(p’“‘t—ﬂ.
Fs/k

where M;/k ranges over all subfields of L with [M; : k] = P2,
and Fs/k ranges all subfields of L with [Fs : k] = p!.
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Motivation

First Example : Elementary abelian extensions
New Result Induction

Main Theorem

Theorem (W. 2020)

Given A = (Z/pZ)" with arbitrary prime number p and r > 1
and a prime ¢. Then for every A-extension L/Q, there exists
d(¢, p) > 0 such that

| CI.[€]] = O.(Disc(L)'/279(ER)Fe)y,

Remark :
@ Pointwise ,
@ Insensitive to base field v
@ Break the GRH bound when r is large_
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Motivation
First Example : Elementary abelian extensions
New Result Induction

How to generalize

What is at the heart of the argument ?
@ Galois module structure
@ Galois structure !

Heart of the Argument : we can Jfrace Fhe erisTesce of
Snall 9PIJ‘C PYW“ n K/ F va mf‘fm‘ﬁ; [9’*9/5
wtat ?’V'W‘-(.S . Eu
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Motivation

First Example : Elementary abelian extensions
New Result Induction

Forcing Extensions

To generalize this idea vertically, we define the following type of
group extensions.

Definition (Forcing Extension)

~

We say that a group extension (G, 7) of G
0>H—>G—>G—0

is forcing if there exists a conjugacy class C C G such that for
every element ¢ € C, all elements in 7~ '(c) ¢ G has the same
order with ¢ € G. We will also say that (G, 7) is forcing with
respect to C.
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Motivation
First Example : Elementary abelian extensions
New Result Induction

Inductive Argument

For an arbitrary integer ¢ > 1, we denote G(¢) to be the set of
permutation Galois groups G where | Clg[¢]| is non-trivially
bounded for every G-extension F/k.

Lemma (W. 2020)

Suppose the regular representation of G is in G(¢). If a group
extension (G, ) of G

O—>H—>C~37i>G—>O

Is a forcing extension with respect to C, then the regular
representation G is also in G ().
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Motivation
First Example : Elementary abelian extensions
New Result Induction

p-Group Theory

Lemma (W. 2020)

Every non-cyclic and non-quaternion p-group G has a
decreasing sequence of normal subgroups N;

GOP(G)=NyDONDODNoD---DNy=e,

where forevery0 < i< m:

1)[N;: Nipq] = p;

2) (G/N;.1, ) is a forcing extension of G/N; where
T G/N,'_H — G/N,
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Motivation
First Example : Elementary abelian extensions
New Result Induction

Quaternion Groups

From the point of view of group theory, the generalized
quaternion group is interesting :

@ It is the only non-cyclic p-groups where all abelian
subgroups are cyclic.

@ It has trivial Schur multiplier.
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Motivation
First Example : Elementary abelian extensions

New Result Induction

Theorem (W. 2020)

The regular representation for every non-cyclic and
non-quaternion p-group G is in G(¢). More generally, if the
Sylow-p subgroup G, for a nilpotent group G is non-cyclic and
non-quaternion for every p|| G|, then the regular representation
of GisingG({).

24/25



(GRH)

(0.A)

(0.A)

(thm}/(yp. —.%‘Wéw
= Tomigu b — Thrne
— T8 mesmon - 2heo )

<
G

1=2

1

~—

3

t

1)

S

(Ellerberg, - Venkslesh)
ald G

(Bllerbey -~ Venbotesh )
od €4

(Ehenktrg, - P/’M—Hﬂva&
(w;fzv).
o< §nom Dy)

(P"WIC - Tor —/?II
"W”d) , (ZZZ‘M ‘TZ‘D'{:&?’)F

-u/ ram
‘Sn,'An, Dn’ 6'\7"0[;*1’6

W. moSt p-e&Tensing
anol »W‘“"‘t
extansions rolotedd




Motivation
First Example : Elementary abelian extensions

New Result Induction

Thank you!
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