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Construction of supercuspidal representations

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)
1998, 2001 J. Adler, J.-K. Yu
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Epipelagic representatio

Intertidal
Zones

abyssopelagic zone

hadalpelagic zone

BENTHIC DIVISION

Figure: The epipelagic zone of the ocean;
source: Sheri Amsel. Glossary (what words mean) with pictures!. 2005-2015. April 2, 2015,
http://www.exploringnature.org/db/detail . php?dbID=13&detID=406
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2007 J.-L. Kim: Yu's construction yields all supercuspidal
representations if p is very large and char F =0
2014 M. Reeder and J.-K. Yu: epipelagic representations

2017, 20207 J. F. and B. Romano (special case), J. F. (general
case): input for Reeder—Yu exists also for small p
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Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and p { |W/|, then
Yu's construction yields all supercuspidal representations.

Jessica Fintzen Representations of p-adic groups and applications 6



Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and p { |W/|, then
Yu's construction yields all supercuspidal representations.

type | Ap(n>=1) | B,,Cya(n>2) | Dp(n=3) Es
(W| | (n+1)! 27 . nl 2n—1l.pl [ 27.3%.5

type E7 E8 F4 G2
(W [210.3%.5.7[21%.35.52.7 | 27.32 | 22.3
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Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and p{ |W/|, then
Yu's construction yields all supercuspidal representations.

v

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal
[Fy-representations if p t |[W| (and G is tame).
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Results continued

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof
(Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).
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There exists a counterexample to the key ingredient of Yu's proof
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Yu's construction yields indeed supercuspidal representations.
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Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof
(Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

Approach to construct supercuspidal representations

@ Construct a representation pk of a compact (mod center)
subgroup K = G (e.g. K = SL,(Zp) inside G = SL,(Qp)).

@ Build a representation of G from the representation pk
(keyword: compact-induction).
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Example of a supercuspidal representation

G = SLy(F),
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GX.0.5
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Example of a supercuspidal representation

stuwszCgplin&ﬂ}

pk - K > GL1(C) =C*, p : {1} > 1eC*
Gx,0.5 Gx05 / Gx05+

i+ p )\ (l+p o /1+p p?
PK=\ 0 14y O 1+p p 1+4p

Jessica Fintzen Representations of p-adic groups and applications 8



Example of a supercuspidal representation

stuwszCgplin&ﬂ}

pk - K > GL1(C) =C*, p : {1} > 1eC*
Gx,0.5 Gx05 / Gx05+

i+ p )\ (l+p o /1+p p?
PK=\ 0 14y O 1+p p 1+4p
(0 T,

“\F, ©

Jessica Fintzen Representations of p-adic groups and applications 8



Example of a supercuspidal representation

stuwszCgplin&ﬂ}

pk - K > GL1(C) =C*, p : {1} > 1eC*
Gx,0.5 Gx05 / Gx05+

i+ p )\ (l+p o /1+p p?
P00 14y O 1+p poo1+4p
(0 F,

“\F, 0
0 a

(b 0) —a+b

Jessica Fintzen Representations of p-adic groups and applications 8



Example of a supercuspidal representation

stuwszCgplin&ﬂ}

pk - K > GL1(C) =C*, p : {1} > 1eC*
Gx,0.5 Gx05 / Gx05+

i+ p )\ (l+p o /1+p p?
PK=\ 0 14y O 1+p p 1+4p
(0 T,

_(Fq 0)—) Fq

0 a
(b 0) —a+b

Jessica Fintzen Representations of p-adic groups and applications 8



Example of a supercuspidal representation

stuwszCgplin&ﬂ}

pk - K > GL1(C) =C*, p : {1} > 1eC*
Gx,0.5 Gx05 / Gx05+

i+ p )\ (l+p o /1+p p?
PK=\ 0 14y O 1+p p 1+4p

0 F
(7)o e

0 a
(b 0) —a+b

Jessica Fintzen Representations of p-adic groups and applications 8



Example of a supercuspidal representation

_ _(1+p p
G = SLa(F), K = ( : 1+p> x {+1)
pk K — GL1(C) =C*, pk : {£1} > 1 e C*

Gx,0.5 Geo5 / Gx05+
i+ p )\ (l+p o / 1+p
PK=\ 0 14y O 1+p p 1+p

0 F
(7)o e

0 a
(b 0) —a+b

Supercuspidal representation:

f(kg) = px(k)f(g) Vg e G, ke K }

c-ind$px = {f :6-C

Jessica Fintzen Representations of p-adic groups and applications 8



Example of a supercuspidal representation

_ _(1+p p
G_suuwj<_< : 1+p>x{in
pk K — GL1(C) =C*, pk : {£1} > 1 e C*

Gx,0.5 Geo5 / Gx05+
i+ p )\ (l+p o / 1+p
PK=\ 0 14y O 1+p p 1+p

0 F
(7)o e

0 a
(b 0) —a+b

f(kg) = px(k)f(g) Vg e G, ke K
f compactly supported

Supercuspidal representation:

c-ind$px = {f :6-C

Jessica Fintzen Representations of p-adic groups and applications 8



Example of a supercuspidal representation

_ _(1+p p
G_suuwj<_< : 1+p>x{in
pk K — GL1(C) =C*, pk : {£1} > 1 e C*

Gx,0.5 Geo5 / Gx05+
i+ p )\ (l+p o / 1+p
PK=\ 0 14y O 1+p p 1+p

0 F
(7)o e

0 a
(b 0) —a+b

f(kg) = px(k)f(g) Vg e G, ke K
f compactly supported

Supercuspidal representation:

c-ind$px = {f :6-C

G-action: g.f(x) =f(x-g)
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Results continued continued

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof
(Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations:
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Results continued continued

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof
(Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations:
-G
c-indg, Pky, -

Theorem 5 (F.—Kaletha—Spice, 2019/2020)

There exists a character € : Ky, — {£1} such that Yu's Prop 14.1
and Thm 14.2 are satisfied for the twisted representation epk,, of
Kvy.
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Results continued continued
Theorem 5 (F.—Kaletha—Spice, 2019/2020)

There exists a character € : K — {£1} such that Yu's Prop 14.1
and Thm 14.2 are satisfied for the twisted representation ep, of
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Applications of Theorem 5
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Theorem 5 (F.—Kaletha—Spice, 2019/2020)

There exists a character € : K — {£1} such that Yu's Prop 14.1
and Thm 14.2 are satisfied for the twisted representation ep, of
K. In particular, c—indféYuepKYu is supercuspidal.

Applications of Theorem 5

@ Formula for Harish-Chandra character of these supercuspidal
representations (Spice, in progress)

o Candidate for local Langlands correspondence for non-singular
representations (Kaletha, Dec 2019)

@ Character identities for the LLC for regular supercuspidal
representations (in progress)

@ Hecke-algebra identities (hope)
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Theory of types: Obtain information about representations of G by
studying representations of compact open subgroups of G. J
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A pair (K, p) of a compact open subgroup K c G and a finite
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Theory of types: Obtain information about representations of G by
studying representations of compact open subgroups of G.

| \

Definition

A pair (K, p) of a compact open subgroup K c G and a finite
dimensional representation p is a supercuspidal type if
for every irreducible representation 7:

Homg (p, m) # {0} = = is supercuspidal

1+0p p

Example: G =SLy(F): K = ( O 1+p

>,p=pK:K—>Fq—>C*
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Types

Theory of types: Obtain information about representations of G by
studying representations of compact open subgroups of G.

Definition

A pair (K, p) of a compact open subgroup K c G and a finite
dimensional representation p is a supercuspidal type if
for every irreducible representation 7:

Homg (p, m) # {0} = = is supercuspidal

1+0p p

Example: G =SLy(F): K = < O 1+p

>,p=pK:K—>IFq—><C*

Definition

An omni-supercuspidal type of level p™ is a pair (U, \),

where U is an open compact subgroup of G and A : U — Z/p™Z
such that (U, o \) is a supercuspidal type

for every nontrivial character ¢ : Z/p™Z — C*.
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Omni-supercuspidal types - results

Definition

An omni-supercuspidal type of level p™ is a pair (U, \),

where U is an open compact subgroup of G and A : U — Z/p™Z
such that (U, o \) is a supercuspidal type

for every nontrivial character ¢ : Z/p™7Z — C*.
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Omni-supercuspidal types - results

Definition

An omni-supercuspidal type of level p™ is a pair (U, \),

where U is an open compact subgroup of G and A : U — Z/p™Z
such that (U, o \) is a supercuspidal type

for every nontrivial character ¢ : Z/p™7Z — C*.

Theorem 6 (F.—Shin, Sep 2020, available at

https://www.dpmms.cam.ac.uk/~jf457/research.html)

Assume G splits over a tame extension, char(F) = 0 and
p > Cox(G). Then there exists a sequence {(Um, Am)}m=1 such
that

@ each (Un, Amm) is an omni-supercuspidal type of level p™,

o Ui Uy>---, and {Un}m=1 forms a basis of open
neighborhoods of 1.
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of 1.

Applications of Theorem 6

@ congruences between arbitrary algebraic automorphic forms
and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
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supercuspidal at p are dense in the spectrum of the Hecke
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Omni-supercuspidal types - applications continued
Applications of Theorem 6

© congruences between arbitrary algebraic automorphic forms and
those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)

@ (classical) automorphic forms with fixed weight that are
supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton—Pagkiinas)
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Applications of Theorem 6

© congruences between arbitrary algebraic automorphic forms and
those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)

@ (classical) automorphic forms with fixed weight that are
supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton—Pagkiinas)

Applications of @ or @:
“May assume that an automorphic form is supercuspidal at p.”

Example: Global Langlands correspondence for GL,:

nice autom rep I of GL,
such that I is (ess) square | Clozel (1991)
integrable at some prime

Galois representation
with Q,-coefficients
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Applications of Theorem 6

© congruences between arbitrary algebraic automorphic forms and
those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)

@ (classical) automorphic forms with fixed weight that are
supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton—Pagkiinas)

Applications of @ or @:
“May assume that an automorphic form is supercuspidal at p.”

Example: Global Langlands correspondence for GL,:

nice autom rep I of GL,
such that I is (ess) square | Clozel (1991)
integrable at some prime

Galois representation
with Q,-coefficients

Q@ or @ = remove square integrability assumption
(F-Shin, Paskiinas)
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Congruences of algebraic automorphic forms

G (connected) reductive group over Q such that G(R) is compact,
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G (connected) reductive group over Q such that G(R) is compact,

A=Aqg, UPC H,Q(Q/) compact open,
0+#p
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Congruences of algebraic automorphic forms

G (connected) reductive group over Q such that G(R) is compact,
A=Aqg, UPC H,Q(Q,) compact open, U, < G(Qp)
t#p
Definition (algebraic automorphic forms)
Q M(UpUP, Zp) = {G(Q\G(A)/UpUPG(R)® — Zp}
QO meN, Ay :=Z,[T]/L+T+...+ TP,
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Congruences of algebraic automorphic forms

Definition (algebraic automorphic forms)
Q@ M(UpUP,Zp) = {G(Q\G(A)/UpUPG(R)® — Zp}
QO meN, Ay :i=Z,[T]/A+T+...+ TP Y,
suppose U, acts smoothly on A, smoothly
M(UpUP, Am) = {G(Q\G(A)/UPG(R)® — An |
f(gup) = u;lf(g) Vg e G(A), up € Up}

Theorem 7 (F.—Shin, Sep 2020, available on my homepage, special

case due to Scholze, 2018)
Let p > Cox(G). Then 3Upm < G(Qp) with Up my C Am

2] M(Up,mupazp)/(l’m) = M(Up,mUpaAm)/(l -T)
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Definition (algebraic automorphic forms)
Q@ M(UpUP,Zp) = {G(Q\G(A)/UpUPG(R)® — Zp}
QO meN, Ay :i=Z,[T]/A+T+...+ TP Y,
suppose U, acts smoothly on A, smoothly
M(UpUP, Am) = {G(Q\G(A)/UPG(R)® — An |
f(gup) = u;lf(g) Vg e G(A), up € Up}

Theorem 7 (F.—Shin, Sep 2020, available on my homepage, special

case due to Scholze, 2018)
Let p > Cox(G). Then 3Upm < G(Qp) with Up my C Am

Q Up1> Upo>---, and {Up m}m=1 forms a basis of open
neighborhoods of 1 € G(Qp)

2] M(UpvaP,ZP)/(p’") = M(Up,mUpaAm)/(l -T)
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Congruences of algebraic automorphic forms

Definition (algebraic automorphic forms)
Q@ M(UpUP,Zp) = {G(Q\G(A)/UpUPG(R)® — Zp}
QO meN, Ay :i=Z,[T]/A+T+...+ TP Y,
suppose U, acts smoothly on A, smoothly
M(UpUP, Am) = {G(Q\G(A)/UPG(R)® — An |
f(gup) = u;lf(g) Vg e G(A), up € Up}

Theorem 7 (F.—Shin, Sep 2020, available on my homepage, special

case due to Scholze, 2018)
Let p > Cox(G). Then 3Upm < G(Qp) with Up my C Am
Q Up1> Upo>---, and {Up m}m=1 forms a basis of open
neighborhoods of 1 € G(Qp)
Q@ M(UpmUP,Zp)/(p™) ~ M(UpmUP,Am)/(1 = T)
(+ Hecke algebra)
@ If N =[] N, ®MNy is an automorphic rep contributing to
M(Up,mUP, Am) ®z, Q,, then M, is supercuspidal.

Jessica Fintzen Representations of p-adic groups and applications 15




The end of the talk,
but only the beginning of the story ...
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