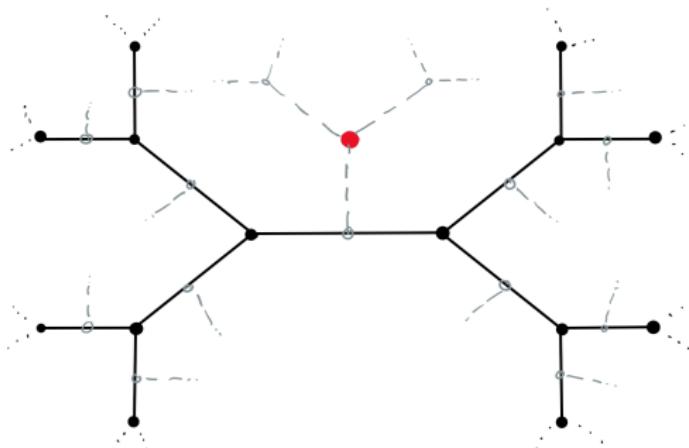


Representations of p -adic groups and applications

Jessica Fintzen

University of Cambridge and Duke University

September 2020



Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q

Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
 G (connected) reductive group over F , e.g.
 $\mathrm{GL}_n(F), \mathrm{SL}_n(F), \mathrm{SO}_n(F), \mathrm{Sp}_{2n}(F), \dots$

Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
 G (connected) reductive group over F , e.g.
 $\mathrm{GL}_n(F), \mathrm{SL}_n(F), \mathrm{SO}_n(F), \mathrm{Sp}_{2n}(F), \dots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex) representations of G .

Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
 G (connected) reductive group over F , e.g.
 $\mathrm{GL}_n(F), \mathrm{SL}_n(F), \mathrm{SO}_n(F), \mathrm{Sp}_{2n}(F), \dots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -)
representations of G . (ℓ a prime $\neq p$)

Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
 G (connected) reductive group over F , e.g.
 $\mathrm{GL}_n(F), \mathrm{SL}_n(F), \mathrm{SO}_n(F), \mathrm{Sp}_{2n}(F), \dots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -)
representations of G . (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p -adic groups

Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
 G (connected) reductive group over F , e.g.
 $\mathrm{GL}_n(F), \mathrm{SL}_n(F), \mathrm{SO}_n(F), \mathrm{Sp}_{2n}(F), \dots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -)
representations of G . (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p -adic groups
- explicit local Langlands correspondence

Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
 G (connected) reductive group over F , e.g.
 $\mathrm{GL}_n(F), \mathrm{SL}_n(F), \mathrm{SO}_n(F), \mathrm{Sp}_{2n}(F), \dots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -)
representations of G . (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p -adic groups
- explicit local Langlands correspondence
- automorphic forms (e.g. J.F. and S.W. Shin)

Representations of p -adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
 G (connected) reductive group over F , e.g.
 $\mathrm{GL}_n(F), \mathrm{SL}_n(F), \mathrm{SO}_n(F), \mathrm{Sp}_{2n}(F), \dots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -)
representations of G . (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p -adic groups
- explicit local Langlands correspondence
- automorphic forms (e.g. J.F. and S.W. Shin)
- p -adic automorphic forms, p -adic Langlands program
- ...

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Representations of p -adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n :

R. Howe, A. Moy, . . ., (1970s and later)

Representations of p -adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n : R. Howe, A. Moy, . . ., (1970s and later)
C. Bushnell and P. Kutzko (1993),

Representations of p -adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n : R. Howe, A. Moy, . . ., (1970s and later)
C. Bushnell and P. Kutzko (1993),
M.-F. Vigneras (1996)

Representations of p -adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n : R. Howe, A. Moy, ..., (1970s and later)
C. Bushnell and P. Kutzko (1993),
[M.-F. Vigneras \(1996\)](#)
classical groups ($p \neq 2$): ..., S. Stevens (2008),

Representations of p -adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n : R. Howe, A. Moy, ..., (1970s and later)
C. Bushnell and P. Kutzko (1993),
[M.-F. Vigneras \(1996\)](#)

classical groups ($p \neq 2$): ..., S. Stevens (2008),
[R. Kurinczuk and S. Stevens \(2018\)](#)

Representations of p -adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$ -) representations of G .

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:

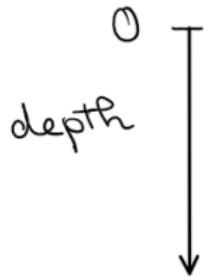
GL_n :	R. Howe, A. Moy, ..., (1970s and later) C. Bushnell and P. Kutzko (1993), M.-F. Vigneras (1996)
classical groups ($p \neq 2$):	..., S. Stevens (2008), R. Kurinczuk and S. Stevens (2018)
inner forms of GL_n :	..., V. Sécherre and S. Stevens (2008)

Constructions of supercuspidal representations for general G :

Construction of supercuspidal representations

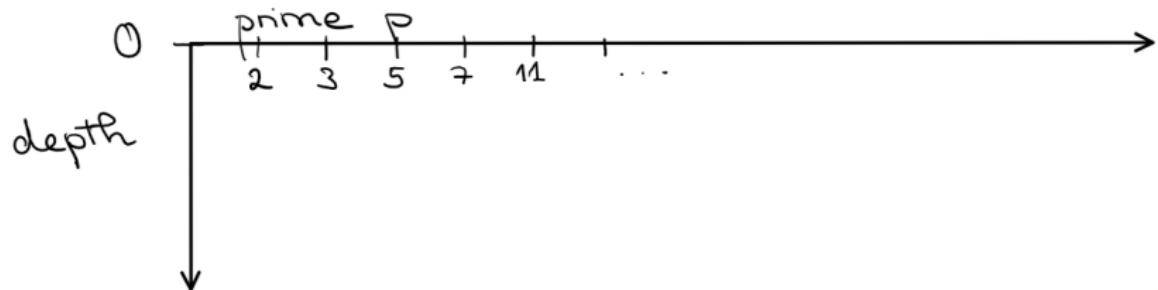
Constructions of supercuspidal representations for general G :

1994/96 A. Moy and G. Prasad



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :
1994/96 A. Moy and G. Prasad



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

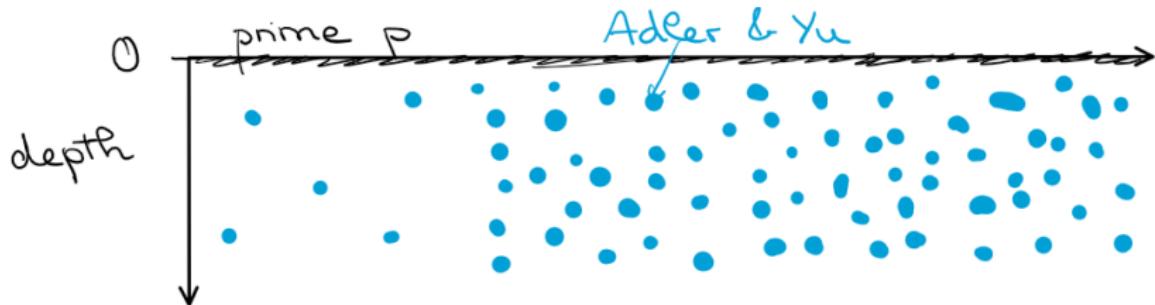
1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu



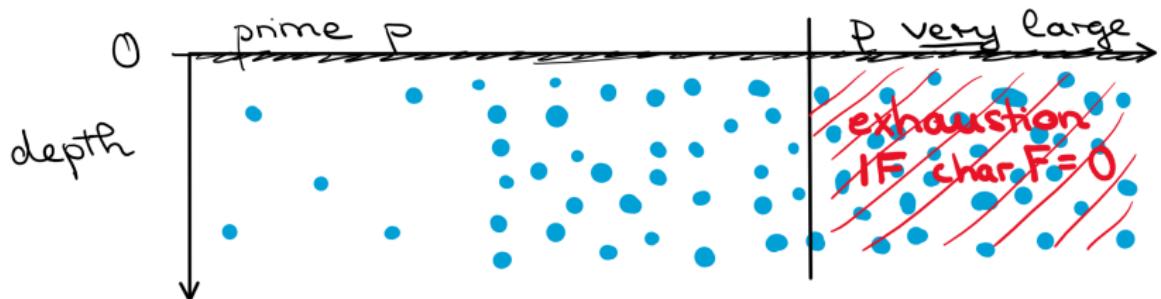
Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**



Construction of supercuspidal representations

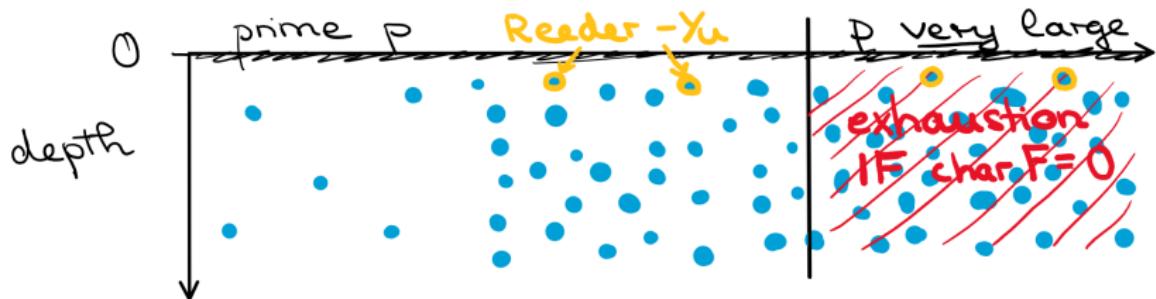
Constructions of supercuspidal representations for general G :

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

2014 M. Reeder and J.-K. Yu: epipelagic representations



Epipelagic representations

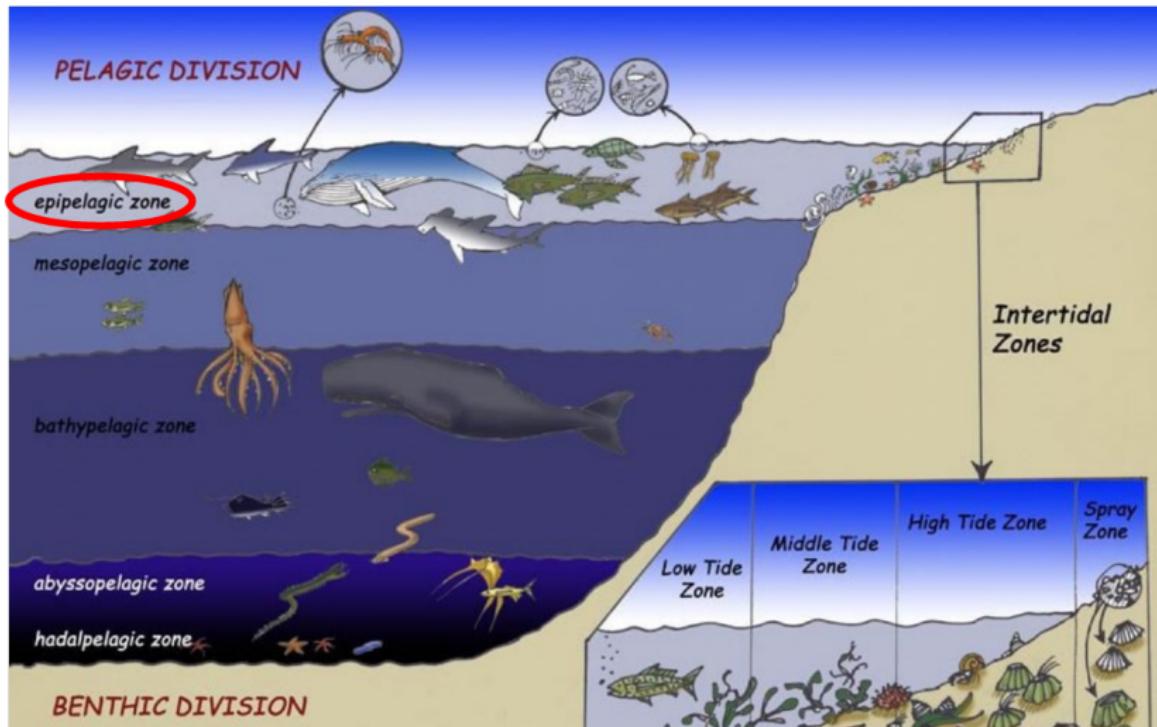


Figure: The epipelagic zone of the ocean;

source: Sheri Amsel. Glossary (what words mean) with pictures!. 2005-2015. April 2, 2015,
<http://www.exploringnature.org/db/detail.php?dbID=13&detID=406>

Construction of supercuspidal representations

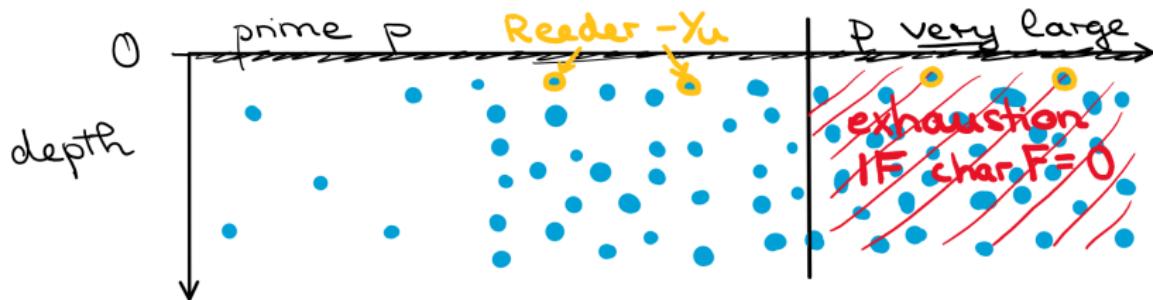
Constructions of supercuspidal representations for general G :

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

2014 M. Reeder and J.-K. Yu: epipelagic representations



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

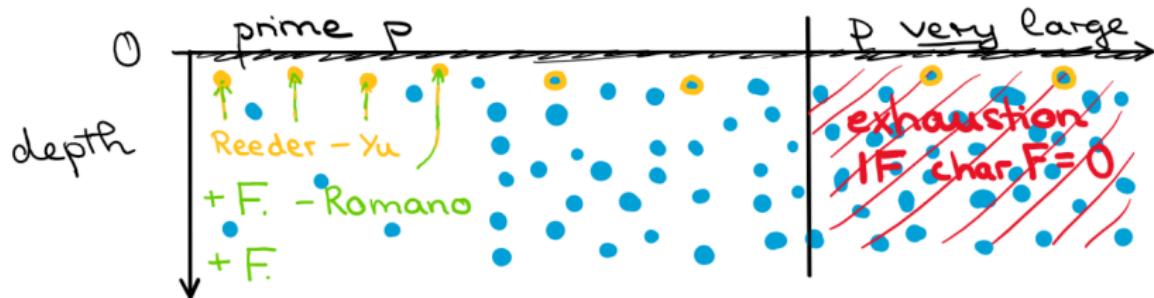
1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

2014 M. Reeder and J.-K. Yu: epipelagic representations

2017, 2020? J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

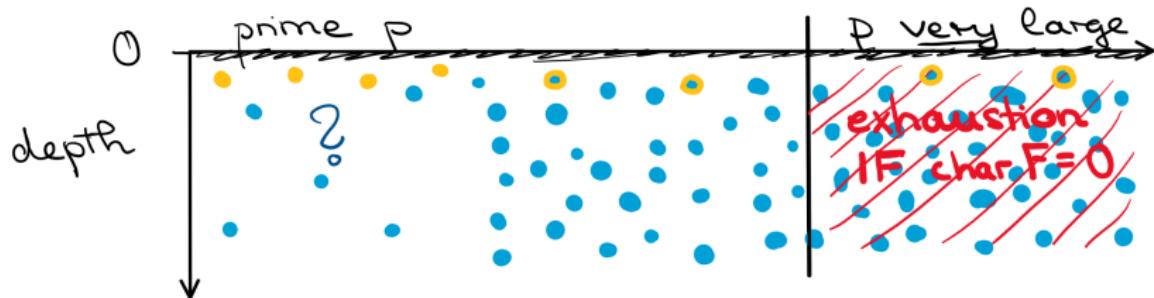
1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

2014 M. Reeder and J.-K. Yu: epipelagic representations

2017, 2020? J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

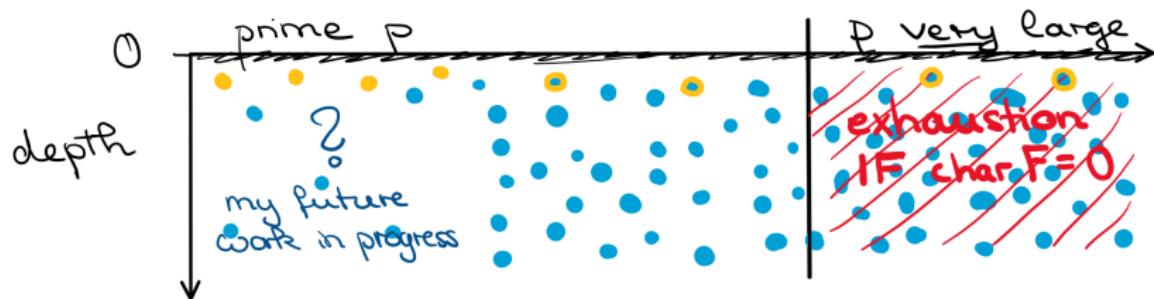
1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

2014 M. Reeder and J.-K. Yu: epipelagic representations

2017, 2020? J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

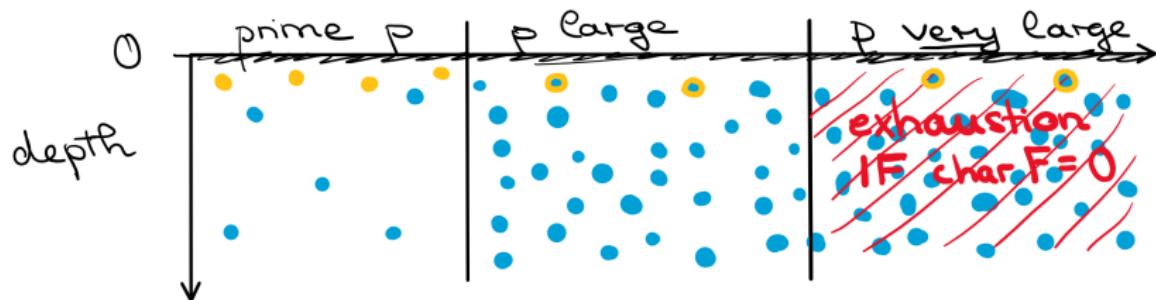
1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

2014 M. Reeder and J.-K. Yu: epipelagic representations

2017, 2020? J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

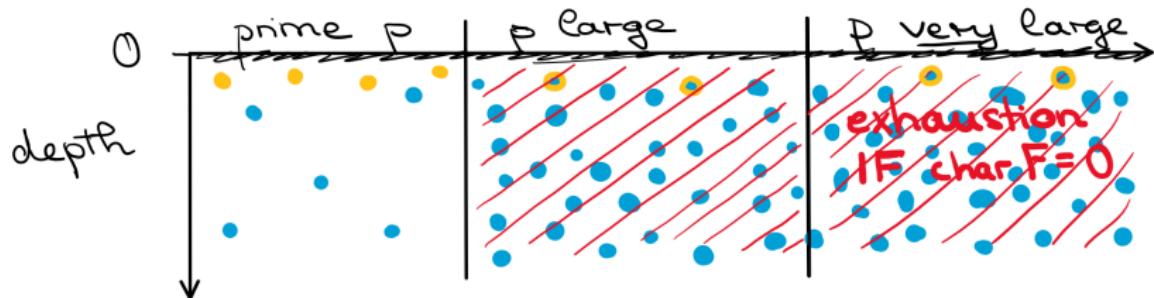
1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

2014 M. Reeder and J.-K. Yu: epipelagic representations

2017, 2020? J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p



Construction of supercuspidal representations

Constructions of supercuspidal representations for general G :

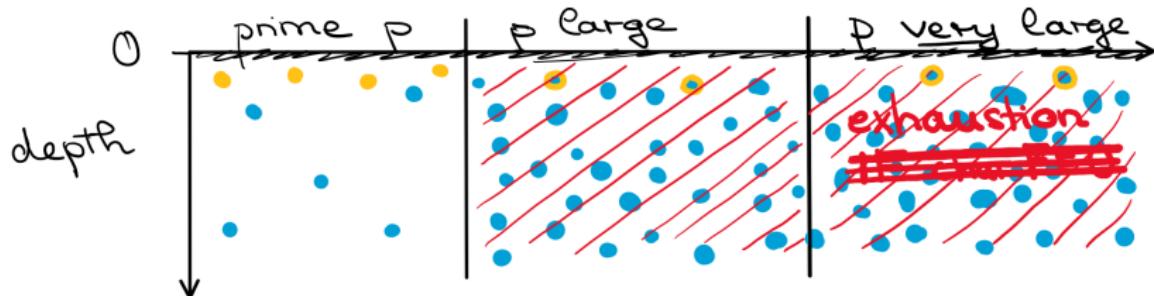
1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations **if p is very large and $\text{char } F = 0$**

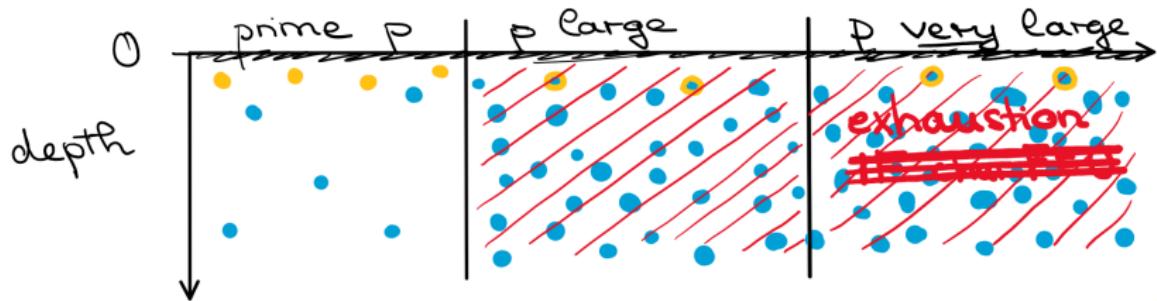
2014 M. Reeder and J.-K. Yu: epipelagic representations

2017, 2020? J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p



Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

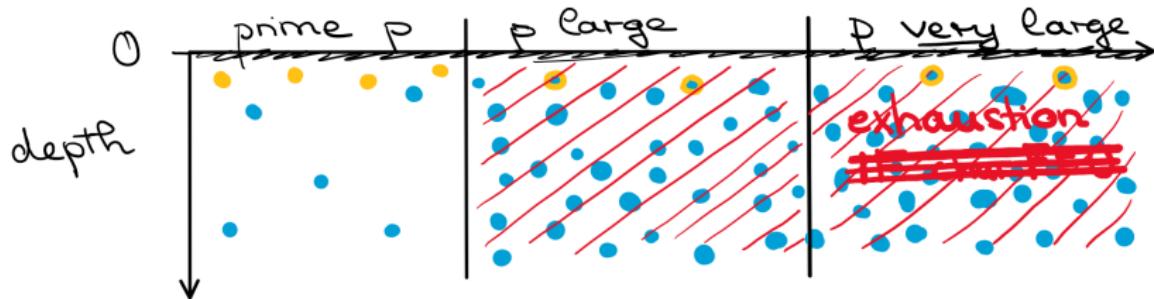


Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

type	$A_n (n \geq 1)$	$B_n, C_n (n \geq 2)$	$D_n (n \geq 3)$	E_6
$ W $	$(n+1)!$	$2^n \cdot n!$	$2^{n-1} \cdot n!$	$2^7 \cdot 3^4 \cdot 5$

type	E_7	E_8	F_4	G_2
$ W $	$2^{10} \cdot 3^4 \cdot 5 \cdot 7$	$2^{14} \cdot 3^5 \cdot 5^2 \cdot 7$	$2^7 \cdot 3^2$	$2^2 \cdot 3$



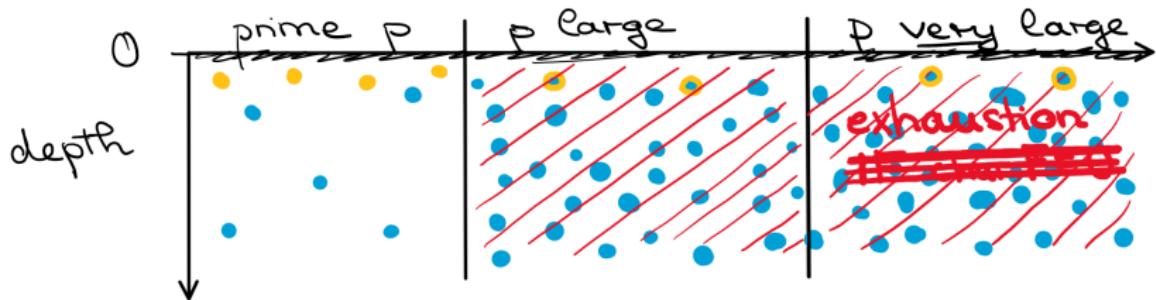
Results

Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_\ell$ -representations if $p \nmid |W|$ (and G is tame).



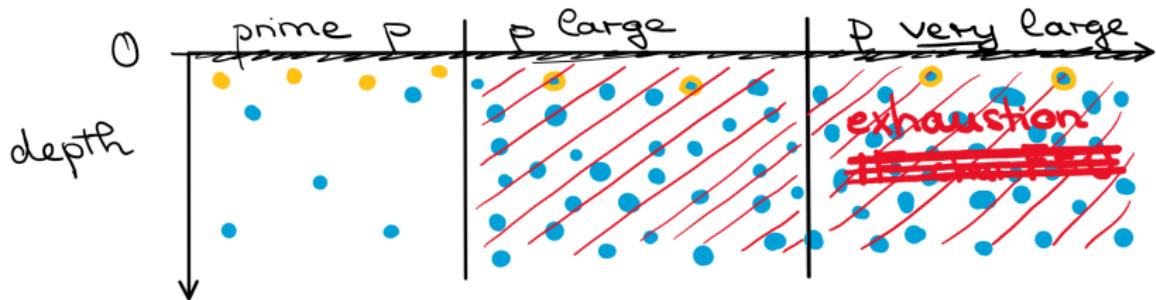
Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_\ell$ -representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)



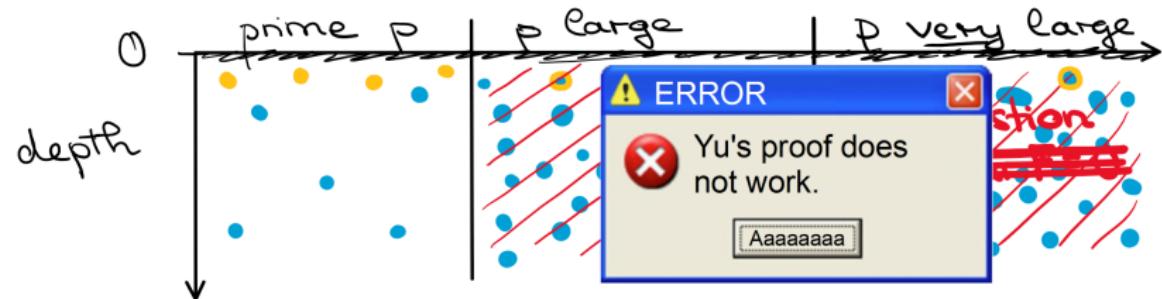
Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_\ell$ -representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)



Results

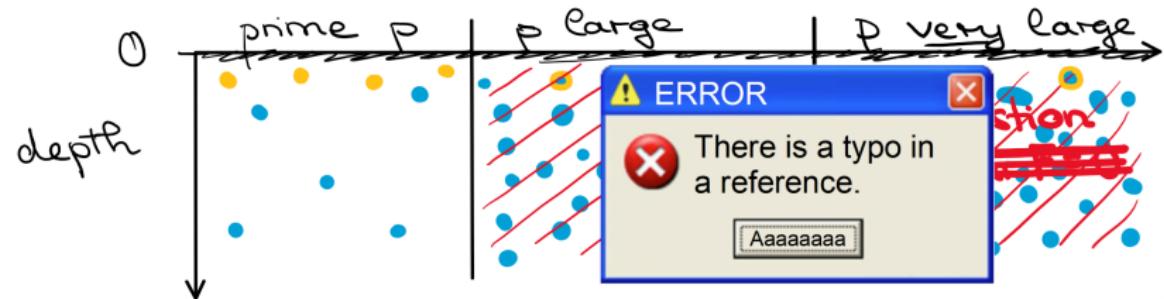
Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

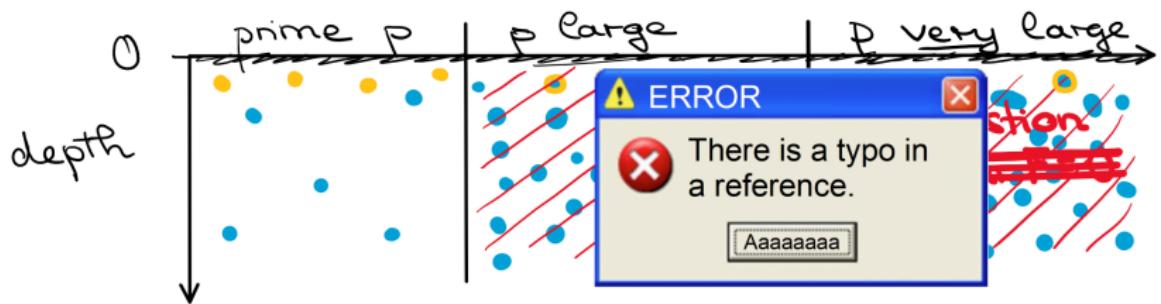
A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_\ell$ -representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)



Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

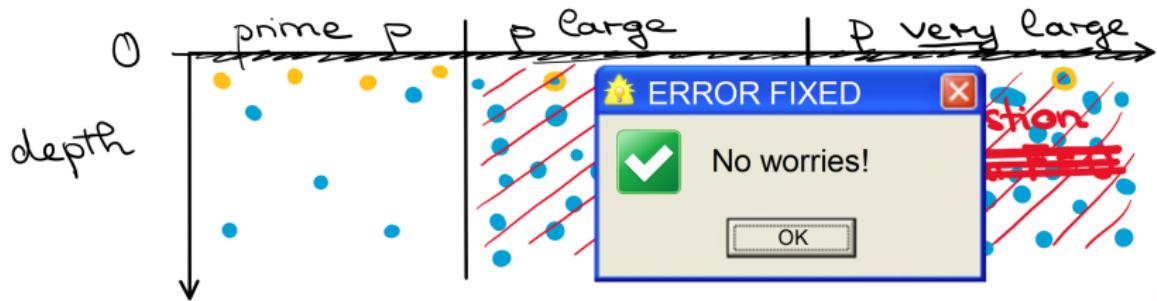


Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

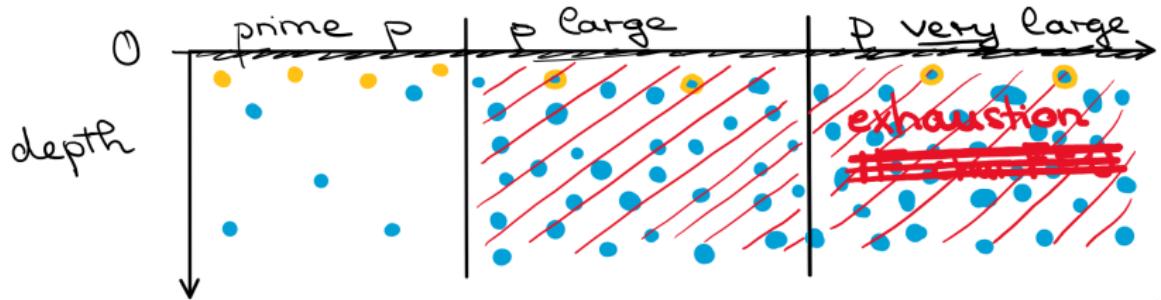


Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.



Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

Approach to construct supercuspidal representations

- 1 Construct a representation ρ_K of a compact (mod center) subgroup $K \subset G$ (e.g. $K = \mathrm{SL}_n(\mathbb{Z}_p)$ inside $G = \mathrm{SL}_n(\mathbb{Q}_p)$).

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

Approach to construct supercuspidal representations

- ① Construct a representation ρ_K of a compact (mod center) subgroup $K \subset G$ (e.g. $K = \mathrm{SL}_n(\mathbb{Z}_p)$ inside $G = \mathrm{SL}_n(\mathbb{Q}_p)$).
- ② Build a representation of G from the representation ρ_K (keyword: compact-induction).

Example of a supercuspidal representation

$G = \mathrm{SL}_2(F)$,

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$
$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*,$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$
$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$
$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$
$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\rho_K : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$G_{x,0.5}$$

$$\rho_K : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{array}{c} G_{x,0.5} \qquad \qquad \qquad G_{x,0.5} \text{ / } G_{x,0.5+} \\ \rho_K : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \rightarrow \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \end{array}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{aligned} \rho_K : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} &\rightarrow \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \\ &\simeq \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \end{aligned}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{aligned} \rho_K : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} &\rightarrow \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \\ &\simeq \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} &\mapsto a+b \end{aligned}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{aligned} \rho_K : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} &\rightarrow \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \\ &\simeq \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \rightarrow \mathbb{F}_q \\ \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} &\mapsto a+b \end{aligned}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{aligned} & G_{x,0.5} & G_{x,0.5} & / & G_{x,0.5+} \\ \rho_K : & \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} & \rightarrow & \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} & / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \\ & \simeq \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} & \rightarrow & \mathbb{F}_q & \rightarrow \mathbb{C}^* \\ & \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} & \mapsto & a+b \end{aligned}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{aligned} \rho_K : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} &\rightarrow \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \\ &\simeq \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \rightarrow \mathbb{F}_q \rightarrow \mathbb{C}^* \\ &\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a+b \end{aligned}$$

Supercuspidal representation:

$$\mathrm{c-ind}_K^G \rho_K = \left\{ f : G \rightarrow \mathbb{C} \mid f(kg) = \rho_K(k)f(g) \ \forall g \in G, k \in K \right\}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{aligned} \rho_K : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} &\rightarrow \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \\ &\simeq \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \rightarrow \mathbb{F}_q \rightarrow \mathbb{C}^* \\ &\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a+b \end{aligned}$$

Supercuspidal representation:

$$\mathrm{c-ind}_K^G \rho_K = \left\{ f : G \rightarrow \mathbb{C} \mid \begin{array}{l} f(kg) = \rho_K(k)f(g) \quad \forall g \in G, k \in K \\ f \text{ compactly supported} \end{array} \right\}$$

Example of a supercuspidal representation

$$G = \mathrm{SL}_2(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \rightarrow \mathrm{GL}_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{\pm 1\} \rightarrow 1 \in \mathbb{C}^*$$

$$\begin{aligned} & G_{x,0.5} & G_{x,0.5} & / & G_{x,0.5+} \\ \rho_K : & \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} & \rightarrow & \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} & / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^2 \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix} \\ & & & \simeq & \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \rightarrow \mathbb{F}_q \rightarrow \mathbb{C}^* \\ & & & & \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a+b \end{aligned}$$

Supercuspidal representation:

$$\mathrm{c-ind}_K^G \rho_K = \left\{ f : G \rightarrow \mathbb{C} \mid \begin{array}{l} f(kg) = \rho_K(k)f(g) \quad \forall g \in G, k \in K \\ f \text{ compactly supported} \end{array} \right\}$$

$$G\text{-action: } g.f(\star) = f(\star \cdot g)$$

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations:

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations:
 $c\text{-ind}_{K_{Y_u}}^G \rho|_{K_{Y_u}}$.

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations:
 $c\text{-ind}_{K_{Yu}}^G \rho_{K_{Yu}}$.

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K_{Yu} \rightarrow \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu} .

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations:
 $c\text{-ind}_{K_{Yu}}^G \rho_{K_{Yu}}$.

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K_{Yu} \rightarrow \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu} . In particular, $c\text{-ind}_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K \rightarrow \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{\text{Yu}}}$ of K . In particular, $\text{c-ind}_{K_{\text{Yu}}}^G \epsilon \rho_{K_{\text{Yu}}}$ is supercuspidal.

Applications of Theorem 5

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K \rightarrow \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K . In particular, $c\text{-ind}_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K \rightarrow \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K . In particular, $c\text{-ind}_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K \rightarrow \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K . In particular, $c\text{-ind}_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
- Character identities for the LLC for regular supercuspidal representations (in progress)

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K \rightarrow \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K . In particular, $c\text{-ind}_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
- Character identities for the LLC for regular supercuspidal representations (in progress)
- Hecke-algebra identities (hope)

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G .

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G .

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G .

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if for every irreducible representation π :

$$\text{Hom}_K(\rho, \pi) \neq \{0\} \Rightarrow \pi \text{ is supercuspidal}$$

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G .

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if for every irreducible representation π :

$$\text{Hom}_K(\rho, \pi) \neq \{0\} \Rightarrow \pi \text{ is supercuspidal}$$

Example: $G = \text{SL}_2(F)$: $K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix}$, $\rho = \rho_K : K \rightarrow \mathbb{F}_q \rightarrow \mathbb{C}^*$

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G .

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if for every irreducible representation π :

$$\text{Hom}_K(\rho, \pi) \neq \{0\} \Rightarrow \pi \text{ is supercuspidal}$$

Example: $G = \text{SL}_2(F)$: $K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix}$, $\rho = \rho_K : K \rightarrow \mathbb{F}_q \rightarrow \mathbb{C}^*$

Definition

An **omni-supercuspidal type** of level p^m is a pair (U, λ) , where U is an open compact subgroup of G and $\lambda : U \rightarrow \mathbb{Z}/p^m\mathbb{Z}$ such that $(U, \psi \circ \lambda)$ is a supercuspidal type for every nontrivial character $\psi : \mathbb{Z}/p^m\mathbb{Z} \rightarrow \mathbb{C}^*$.

Definition

An **omni-supercuspidal type** of level p^m is a pair (U, λ) , where U is an open compact subgroup of G and $\lambda : U \twoheadrightarrow \mathbb{Z}/p^m\mathbb{Z}$ such that $(U, \psi \circ \lambda)$ is a supercuspidal type for every nontrivial character $\psi : \mathbb{Z}/p^m\mathbb{Z} \rightarrow \mathbb{C}^*$.

Definition

An **omni-supercuspidal type** of level p^m is a pair (U, λ) , where U is an open compact subgroup of G and $\lambda : U \rightarrow \mathbb{Z}/p^m\mathbb{Z}$ such that $(U, \psi \circ \lambda)$ is a supercuspidal type for every nontrivial character $\psi : \mathbb{Z}/p^m\mathbb{Z} \rightarrow \mathbb{C}^*$.

Theorem 6 (F.-Shin, Sep 2020, available at

<https://www.dpmms.cam.ac.uk/~jf457/research.html>)

Assume G splits over a tame extension, $\text{char}(F) = 0$ and $p > \text{Cox}(G)$. Then there exists a sequence $\{(U_m, \lambda_m)\}_{m \geq 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \triangleright U_2 \triangleright \dots$, and $\{U_m\}_{m \geq 1}$ forms a basis of open neighborhoods of 1.

Theorem 6 (F.-Shin, Sep 2020, available at

<https://www.dpmms.cam.ac.uk/~jf457/research.html>)

Assume G splits over a tame extension, $\text{char}(F) = 0$ and $p > \text{Cox}(G)$.
Then there exists a sequence $\{(U_m, \lambda_m)\}_{m \geq 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \triangleright U_2 \triangleright \dots$, and $\{U_m\}_{m \geq 1}$ forms a basis of open neighborhoods of 1.

Theorem 6 (F.-Shin, Sep 2020, available at

<https://www.dpmms.cam.ac.uk/~jf457/research.html>)

Assume G splits over a tame extension, $\text{char}(F) = 0$ and $p > \text{Cox}(G)$.
Then there exists a sequence $\{(U_m, \lambda_m)\}_{m \geq 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \triangleright U_2 \triangleright \dots$, and $\{U_m\}_{m \geq 1}$ forms a basis of open neighborhoods of 1.

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)

Theorem 6 (F.-Shin, Sep 2020, available at

<https://www.dpmms.cam.ac.uk/~jf457/research.html>)

Assume G splits over a tame extension, $\text{char}(F) = 0$ and $p > \text{Cox}(G)$.
Then there exists a sequence $\{(U_m, \lambda_m)\}_{m \geq 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \triangleright U_2 \triangleright \dots$, and $\{U_m\}_{m \geq 1}$ forms a basis of open neighborhoods of 1.

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra (based on work by Emerton–Paškūnas)

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton–Paškūnas)

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton–Paškūnas)

Applications of ① or ②:

“May assume that an automorphic form is supercuspidal at p .”

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton–Paškūnas)

Applications of ① or ②:

“May assume that an automorphic form is supercuspidal at p .”

Example: Global Langlands correspondence for GL_n :

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton–Paškūnas)

Applications of ① or ②:

“May assume that an automorphic form is supercuspidal at p .”

Example: Global Langlands correspondence for GL_n :

nice autom rep Π of GL_n

such that Π is (ess) square

integrable at some prime

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton–Paškūnas)

Applications of ① or ②:

“May assume that an automorphic form is supercuspidal at p .”

Example: Global Langlands correspondence for GL_n :

nice autom rep Π of GL_n
such that Π is (ess) square
integrable at some prime

Clozel (1991)

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton–Paškūnas)

Applications of ① or ②:

“May assume that an automorphic form is supercuspidal at p .”

Example: Global Langlands correspondence for GL_n :

nice autom rep Π of GL_n
such that Π is (ess) square
integrable at some prime

Clozel (1991)

Galois representation
with $\overline{\mathbb{Q}}_p$ -coefficients

Applications of Theorem 6

- ① congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
(for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra
(based on work of Emerton–Paškūnas)

Applications of ① or ②:

“May assume that an automorphic form is supercuspidal at p .”

Example: Global Langlands correspondence for GL_n :

nic autom rep Π of GL_n
such that Π is (ess) square
integrable at some prime

Clozel (1991)

Galois representation
with $\overline{\mathbb{Q}}_p$ -coefficients

① or ② \Rightarrow remove square integrability assumption
(F–Shin, Paškūnas)

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,
 $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$,

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,
 $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod'_{\ell \neq p} \mathcal{G}(\mathbb{Q}_{\ell})$ compact open,

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,
 $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod'_{\ell \neq p} \mathcal{G}(\mathbb{Q}_{\ell})$ compact open, $U_p \subset \mathcal{G}(\mathbb{Q}_p)$

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,
 $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod'_{\ell \neq p} \mathcal{G}(\mathbb{Q}_{\ell})$ compact open, $U_p \subset \mathcal{G}(\mathbb{Q}_p)$

Definition (algebraic automorphic forms)

- a $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^{\circ} \rightarrow \mathbb{Z}_p\}$

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,
 $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod'_{\ell \neq p} \mathcal{G}(\mathbb{Q}_{\ell})$ compact open, $U_p \subset \mathcal{G}(\mathbb{Q}_p)$

Definition (algebraic automorphic forms)

- $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^{\circ} \rightarrow \mathbb{Z}_p\}$
- $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,
 $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod'_{\ell \neq p} \mathcal{G}(\mathbb{Q}_{\ell})$ compact open, $U_p \subset \mathcal{G}(\mathbb{Q}_p)$

Definition (algebraic automorphic forms)

- $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^{\circ} \rightarrow \mathbb{Z}_p\}$
- $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,
suppose U_p acts smoothly on A_m smoothly:

\mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact,
 $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod'_{\ell \neq p} \mathcal{G}(\mathbb{Q}_{\ell})$ compact open, $U_p \subset \mathcal{G}(\mathbb{Q}_p)$

Definition (algebraic automorphic forms)

- a $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^{\circ} \rightarrow \mathbb{Z}_p\}$
- b $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,
suppose U_p acts smoothly on A_m smoothly:
 $M(U_p U^p, A_m) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U^p \mathcal{G}(\mathbb{R})^{\circ} \rightarrow A_m \mid f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Definition (algebraic automorphic forms)

- a $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow \mathbb{Z}_p\}$
- b $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,
suppose U_p acts smoothly on A_m smoothly
 $M(U_p U^p, A_m) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow A_m \mid f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Congruences of algebraic automorphic forms

Definition (algebraic automorphic forms)

- $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow \mathbb{Z}_p\}$
- $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,
suppose U_p acts smoothly on A_m smoothly
 $M(U_p U^p, A_m) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow A_m \mid f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Theorem 7 (F.-Shin, Sep 2020, available on my homepage, special case due to Scholze, 2018)

Let $p > \text{Cox}(\mathcal{G})$. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \supset A_m$

• $M(U_{p,m} U^p, \mathbb{Z}_p)/(p^m) \simeq M(U_{p,m} U^p, A_m)/(1 - T)$

Congruences of algebraic automorphic forms

Definition (algebraic automorphic forms)

- $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow \mathbb{Z}_p\}$
- $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,
suppose U_p acts smoothly on A_m smoothly
 $M(U_p U^p, A_m) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow A_m \mid f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Theorem 7 (F.-Shin, Sep 2020, available on my homepage, special case due to Scholze, 2018)

Let $p > \text{Cox}(\mathcal{G})$. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \supset A_m$

- $M(U_{p,m} U^p, \mathbb{Z}_p)/(p^m) \simeq M(U_{p,m} U^p, A_m)/(1 - T)$
- If $\Pi = \prod' \Pi_\ell \otimes \Pi_\infty$ is an automorphic rep contributing to $M(U_{p,m} U^p, A_m) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}_p}$, then Π_p is supercuspidal.

Congruences of algebraic automorphic forms

Definition (algebraic automorphic forms)

- $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow \mathbb{Z}_p\}$
- $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,
suppose U_p acts smoothly on A_m smoothly
 $M(U_p U^p, A_m) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow A_m \mid f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Theorem 7 (F.-Shin, Sep 2020, available on my homepage, special case due to Scholze, 2018)

Let $p > \text{Cox}(\mathcal{G})$. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \supset A_m$

- 1 $U_{p,1} \triangleright U_{p,2} \triangleright \dots$, and $\{U_{p,m}\}_{m \geq 1}$ forms a basis of open neighborhoods of $1 \in \mathcal{G}(\mathbb{Q}_p)$
- 2 $M(U_{p,m} U^p, \mathbb{Z}_p)/(p^m) \simeq M(U_{p,m} U^p, A_m)/(1 - T)$
- 3 If $\Pi = \prod' \Pi_\ell \otimes \Pi_\infty$ is an automorphic rep contributing to $M(U_{p,m} U^p, A_m) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}_p}$, then Π_p is supercuspidal.

Congruences of algebraic automorphic forms

Definition (algebraic automorphic forms)

- a) $M(U_p U^p, \mathbb{Z}_p) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U_p U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow \mathbb{Z}_p\}$
- b) $m \in \mathbb{N}$, $A_m := \mathbb{Z}_p[T]/(1 + T + \dots + T^{p^m-1})$,
suppose U_p acts smoothly on A_m smoothly
 $M(U_p U^p, A_m) = \{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}) / U^p \mathcal{G}(\mathbb{R})^\circ \rightarrow A_m \mid f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Theorem 7 (F.-Shin, Sep 2020, available on my homepage, special case due to Scholze, 2018)

Let $p > \text{Cox}(\mathcal{G})$. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \supset A_m$

- 1 $U_{p,1} \triangleright U_{p,2} \triangleright \dots$, and $\{U_{p,m}\}_{m \geq 1}$ forms a basis of open neighborhoods of $1 \in \mathcal{G}(\mathbb{Q}_p)$
- 2 $M(U_{p,m} U^p, \mathbb{Z}_p)/(p^m) \simeq M(U_{p,m} U^p, A_m)/(1 - T)$
(+ Hecke algebra)
- 3 If $\Pi = \prod' \Pi_\ell \otimes \Pi_\infty$ is an automorphic rep contributing to $M(U_{p,m} U^p, A_m) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}_p}$, then Π_p is supercuspidal.

The end of the talk,
but only the beginning of the story ...

