






































































































































































































































We discussed integration by substitution over nonarchimedean local fields last time. More generally,
one can perform a change of variables in any dimension:

Theorem 13.3. Let A be a compact open subset of Kn. Let f1, . . . , fn P KrX1, . . . , Xns. For any
y P Kn, let mpyq “ #tx P A | fpxq “ yu. Then,

ż

Kn

mpyqdy “

ż

A
| det Jacpfqpxq|dx,

where Jacpfqpxq “ p
Bfipxq

Bxj
qi,j is the Jacobian matrix.

We skip the proof, which works similarly to Theorem 13.2, but using an n-dimensional form of
Hensel’s lemma.

Remark 13.4. There is a good notion of manifolds over K. One can integrate real-valued functions
over manifolds, and there is a corresponding change of variables formula. (See the two references
mentioned last time: [Pop] and [Igu00].)

14 Some mass formulas

One can either count isomorphism classes of (separable) field extensions of K, or subfields of Ksep.
Of course, Galois conjugate subfields are isomorphic, so there may be fewer isomorphism classes
than subfields of Ksep. More precisely:

Lemma 14.1. Let L be a separable field extension of K of degree n. Then,

#tK Ď L1 Ď Ksep | L1 – L as K-algebrasu “
n

#AutpLq
.

Proof. There are n embeddings L ãÑ Ksep. Two embeddings ρ1, ρ2 have the same image if and
only if ρ1 “ ρ2 ˝ σ for some automorphism σ of L.

For the rest of this section, let K be a nonarchimedean local field with residue field Fq.

Theorem 14.2 (Serre’s mass formula, [Ser78]). Consider the totally ramified separable degree n
field extensions L of K, up to isomorphism. We have

ÿ

L

| discpL|Kq|K

#AutpLq
“

1

qn´1
.

Remark 14.3. Any inseparable extension L of K has discpL|Kq “ 0, so including them wouldn’t
change the sum.

Remark 14.4. There are infinitely many (separable) totally ramified degree n field extensions L
of K if and only if the characteristic of K divides n.

Proof. By Lemma 14.1, we can write the left-hand side as the following sum over totally ramified
degree n field extensions L Ď Ksep of K:

1

n
¨
ÿ

L

|discpL|Kq|.



For any L as above, let UL Ď L be the set of uniformizers in L. Let P be the set of separable monic
degree n Eisenstein polynomials f P OKrXs. The characteristic polynomial of any a P UL lies in
P since L is totally ramified. Conversely, the n roots of any f P P in Ksep each generate a totally
ramified degree n extension of K. We thus have an n-to-1 map

ψ :
ğ

LĎKsep

totally ramified
degree n

UL Ñ P

sending a P UL to its characteristic polynomial. We again identify monic degree n polynomials
with their coefficient tuple, so P Ď On

K .

The theorem will follow from the change of variables formula applied to this map.

We first compute the volume of P directly. The set of Eisenstein polynomials Xn ` cn´1X
n´1 `

¨ ¨ ¨`c0 (with c0 P πKOˆ
K and c1, . . . , cn´1 P πKOK) has volume q´np1´q´1q. The set of inseparable

monic degree n polynomials f in OKrXs has volume 0 because all inseparable polynomials f have
discriminant zero. (The discriminant is a nonzero polynomial in the coefficients of f . The set of
roots of any nonzero polynomial has volume 0.) Hence,

volpP q “ q´np1 ´ q´1q.

Fix a field L as above, and any uniformizer πL of L. (As L is totally ramified, we have vKpπLq “
1
nvKpπKq.) Our goal is to compute the volume of the image of UL. Note that p1, πL, . . . , π

n´1
L q is

an integral basis of L. The map d : Kn Ñ L, pb0, . . . , bn´1q ÞÑ b0 ` b1πL ` ¨ ¨ ¨ ` bn´1π
n´1
L therefore

sends On
K to OL. Our Haar measure on Kn corresponds to our Haar measure on L under this

map. The uniformizers of L are exactly the linear combinations b0 ` b1πL ` ¨ ¨ ¨ ` bn´1π
n´1
L with

b0 P πKOK and b1 P Oˆ
K and b2, . . . , bn´1 P OK . Hence,

volpULq “ q´1p1 ´ q´1q.

Consider the n homomorphisms ρ1, . . . , ρn : L Ñ Ksep, and combine them to a map ρ : L Ñ

pKsepqn. The linear map ρ ˝ d : Kn Ñ pKsepqn is described by the matrix pρipπ
j
Lqqi,j . Since

p1, πL, . . . , π
n´1
L q is an integral basis of L, its determinant is | discpL|Kq|1{2.

As in section 9, we consider the map

χ : pKsepqn Ñ tf P KseprXs monic, degree nu – Kn

that sends a “ pa1, . . . , anq to pX´a1q ¨ ¨ ¨ pX´anq. Its Jacobian determinant has norm
ś

iăj |ai´aj |.

(See Lemma 9.4.) If a “ ρpπ1
Lq for a uniformizer π1

L of L, then this product is | discpπ1
Lq|1{2 “

| discpL|Kq|1{2, again because p1, π1
L, . . . , π

1n´1
L q is an integral basis.

The composition χ ˝ ρ ˝ d : Kn Ñ pKsepqn sends pb0, . . . , bn´1q to (the coefficient tuple of) the
characteristic polynomial of b0 ` b1πL ` ¨ ¨ ¨ ` bn´1π

n´1
L . Combining the above computations, we

see that the norm of the Jacobian determinant of this map is | discpL|Kq|.

Hence, by Theorem 13.3, if we interpret the image ψpULq as a multiset, then

volpψpULqq “ |discpL|Kq| ¨ volpULq “ |discpL|Kq| ¨ q´1p1 ´ q´1q.

As ψ is n-to-1, we have
ÿ

LĎKsep

totally ramified
degree n

volpψpULqq “ n ¨ volpP q,



so
ÿ

L

| discpL|Kq| ¨ q´1p1 ´ q´1q “ n ¨ q´np1 ´ q´1q,

so indeed
1

n
¨
ÿ

L

| discpL|Kq| “ q´pn´1q.

Corollary 14.5. Consider the separable field extensions L of K with ramification index e and
inertia degree f , up to isomorphism. We have

ÿ

L

| discpL|Kq|

#AutpLq
“

1

f ¨ qpe´1qf
.

Proof. To avoid confusion, we will write | ¨ |K and | ¨ |L for the normalized norm on K and L,
respectively, and similarly qK and qL for the residue field size of K and L, respectively.

Using, Lemma 14.1, the left-hand side can again be rewritten as a sum over field extensions L Ď Ksep

of K with ramification index e and inertia degree f :

1

ef
¨

ÿ

LĎKsep

| discpL|Kq|K

#AutpLq
.

Each such field extension L|K decomposes uniquely as L|F |K with F |K unramified of degree f

and L|F totally ramified of degree e. (Here, F is the splitting field of the polynomial Xqf ´ X.)
By the relative discriminant formula,

| discpL|Kq|K “ |NmF |KpdiscpL|F qq ¨ discpF |Kq|K “ |NmF |KpdiscpL|F qq|K “ |discpL|F q|L.

Since there is exactly one unramified extension F Ď Ksep of degree f , the theorem implies:

1

ef
¨

ÿ

LĎKsep

|discpL|Kq|K “
1

f
¨

1

qe´1
L

“
1

f ¨ q
pe´1qf
K

.

We can now prove the following mass formula regarding all étale extensions of K.

Theorem 14.6 ([Bha07, Theorem 1.1] and [Ked07, Theorem 1.1]). Consider the étale K-algebras
L of degree n, up to isomorphism. We have

ÿ

L

|discpL|Kq|

#AutpLq
“

n
ÿ

r“0

P pn, rq

qn´r
,

where P pn, rq is the number of partitions of the integer n into r positive summands.

Example 14.7. If 2 ∤ q, then the degree 2 extensions are K ˆ K, Kp
?
aq, Kp

?
πKq, Kp

?
aπq,

where a P Oˆ
K is a quadratic nonresidue. They all have two automorphisms, and their discriminant

norms are 1, 1, q´1, q´1, respectively. Hence,
ř

L
|discpL|Kq|

#AutpLq
“ 1 ` q´1.

Proof. Any L can be written as L “ L1 ˆ ¨ ¨ ¨ ˆ Lr, with discpL|Kq “ discpL1|Kq ¨ ¨ ¨ discpLr|Kq,
n “ rL1 : Ks ` ¨ ¨ ¨ ` rLr : Ks. Consider the obvious action of Sr on the set of tuples pL1, . . . , Lrq

of isomorphism classes of field extensions of K. We have

#AutpLq “ #AutpL1q ¨ ¨ ¨#AutpLrq ¨ #StabSrppL1, . . . , Lrqq.



(Any automorphism consists of a permutation of isomorphic factors of L together with isomorphisms
of the individual factors.)

Let

an :“
ÿ

L
separable field ext.

of degree n

| discpL|Kq|

#AutpLq
.

It follows from the above discussion that

bn :“
ÿ

L
étale K-algebra

of degree n

| discpL|Kq|

#AutpLq
“

ÿ

rě0

ÿ

Sr-orbit of pL1, . . . , Lrq

with n “
ř

irLi : Ks

ź

i

| discpLi|Kq|

#AutpLiq
¨

1

#StabSrppL1, . . . , Lrqq
.

By the orbit-stabilizer theorem, this is

ÿ

rě0

1

r!

ÿ

pL1,...,Lrq

with n “
ř

irLi : Ks

ź

i

| discpLi|Kq|

#AutpLiq
.

This implies that the generating functions
ř

n anX
n and

ř

n bnX
n are related by the power series

identity
ÿ

ně0

bnX
n “ exp

ˆ

ÿ

ně0

anX
n

˙

.

According to the previous corollary, we have

an “
ÿ

e,fě1:
ef“1

1

f ¨ qpe´1qf
,

so
ÿ

ně0

anX
n “

ÿ

e,fě1

Xef

f ¨ qpe´1qf
“ ´

ÿ

eě1

log

ˆ

1 ´
Xe

qe´1

˙

.

Hence,

ÿ

ně0

bnX
n “

ź

eě1

1

1 ´ Xe

qe´1

“
ź

eě1

ÿ

tě0

ˆ

Xe

qe´1

˙t

“
ÿ

t1,t2,¨¨¨ě0

X
ř

eě1 ete

q
ř

eě1pe´1qte
“

ÿ

ně0

P pn, rq

qn´r
Xn.

(Any choice of t1, t2, . . . with n “
ř

eě1 ete corresponds to a partition of n into
ř

eě1 te summands,
where e occurs te times.)
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