Math 223a: Algebraic Number Theory Fall 2020

Problem set #5

due Friday, October 9 at 10:30am

Problem 1. Let L|K be a degree *n* extension of number fields. Assume that its Galois closure *M* has Galois group $Gal(M|K) \cong S_n$.

- a) What is the density of prime ideals \mathfrak{p} of \mathcal{O}_K (ordered by norm) that split completely in \mathcal{O}_L ?
- b) What is the density of prime ideals \mathfrak{p} of \mathcal{O}_K (ordered by norm) that remain inert in \mathcal{O}_L ?

Problem 2. Let K be a field extension of \mathbb{Q} and let $n \ge 1$. Show that the following are equivalent:

- a) For any two prime numbers p, p' such that $p \equiv \pm p' \mod n$, the ideals (p) and (p') split in the same way in \mathcal{O}_K .
- b) The field K is contained in $\mathbb{Q}(\zeta_n + \zeta_n^{-1})$.

Problem 3. Which nonzero integers *a* satisfy the following property?

There exists an integer $n \ge 1$ such that any two prime numbers p, p' with $p \equiv \pm p' \mod n$ split in the same way in $\mathbb{Q}(\sqrt{a})$.

Problem 4. Show that there is a number field K satisfying the following two properties:

- a) There is an integer $n \ge 1$ such that for all primes $p \equiv p' \mod n$, there is a prime ideal \mathfrak{p} of \mathcal{O}_K dividing p with residue field $\kappa(\mathfrak{p}) = \kappa(p) = \mathbb{F}_p$ if and only if there is a prime ideal \mathfrak{p}' of \mathcal{O}_K dividing p' with residue field $\kappa(\mathfrak{p}') = \kappa(p') = \mathbb{F}_{p'}$.
- b) The field K is not contained in $\mathbb{Q}(\zeta_m)$ for any m.

(In more elementary terms: There is an irreducible polynomial $f(X) \in \mathbb{Z}[X]$ such that whether f(X) has a root modulo p depends only on $p \mod n$ for some $n \ge 1$, but the splitting field of f(X) is not contained in $\mathbb{Q}(\zeta_m)$ for any m.) **Problem 5.** Let $K \subseteq \mathbb{Q}(\zeta_{\infty})$ be a finite field extension of \mathbb{Q} . Show that a prime number p divides the conductor of K (smallest $n \ge 1$ such that $K \subseteq \mathbb{Q}(\zeta_n)$) if and only if it divides the discriminant of K.