Math 223a: Algebraic Number Theory Fall 2019

Homework #11

due Tuesday, November 26 at noon

Problem 1. Let *D* be any division *K*-algebra of degree $n = \dim_K(D)$. Let $\operatorname{End}_K(D) \cong M_n(K)$ be the *K*-algebra of *K*-vector space endomorphisms of *D*. Verify that the following defines an isomorphism of *K*-algebras, so D^{opp} is indeed the inverse of *D* in the Brauer group $\operatorname{Br}(K)$:

$$D \otimes_K D^{\text{opp}} \longrightarrow \text{End}_K(D)$$
$$x \otimes y \longmapsto (t \mapsto xty)$$

Definition. For a field K of characteristic char $(K) \neq 2$ and elements $r, s \in K^{\times}$, define the Quaternion algebra $(r, s)_K$ as the four-dimensional K-algebra with basis 1, i, j, k and multiplication given by $i^2 = r, j^2 = s, ij = -ji = k$.

•	i	j	k
i	r	k	rj
j	-k	s	-si
k	-rj	si	-rs

For example, $(-1, -1)_{\mathbb{R}}$ is the ring \mathbb{H} of Hamilton quaternions. You can show that $(r, s)_K$ is a central simple K-algebra, so it must be isomorphic to $M_n(D)$ for some $n \ge 1$ and some central division K-algebra.

Problem 2. Show that $(r, s)_K \otimes_K (r, s)_K \cong M_2(K)$ for all K, r, s as above. (So $(r, s)_K$ has order dividing 2 in Br(K).)

Problem 3. Let $A = (r, s)_K$ and $t = a + bi + cj + dk \in A$.

- a) What is the minimal polynomial of t?
- b) Show that $N_{A|K}(t) = (a^2 rb^2 sc^2 + rsd^2)^2$.

Problem 4. Show that $A = (r, s)_K$ is a division ring if and only if the equation $a^2 = rb^2 + sc^2$ has no solution $(0, 0, 0) \neq (a, b, c) \in K^3$.

Problem 5. Using Wedderburn's Theorem, show that for any odd prime p and any $r, s \in \mathbb{F}_p^{\times}$ the equation $a^2 - rb^2 - sc^2 + rsd^2 = 0$ has exactly $p^3 + p^2 - p$ solutions $(a, b, c, d) \in \mathbb{F}_p^4$.

Definition. Let D be a division \mathbb{Q} -algebra. An element x of D is called *integral* if it is the root of a monic polynomial with coefficients in \mathbb{Z} . In the noncommutative case, it generally doesn't make sense to talk about *the ring of integers*. Instead, one looks at *maximal orders*:

Problem 6. Consider the ring R of elements a + bi + cj + dk of \mathbb{H} such that a, b, c, d are either all integers (elements of \mathbb{Z}) or all half-integers (elements of $\frac{1}{2} + \mathbb{Z}$).

- a) Show that every element of R is integral.
- b) Show that R doesn't contain all integral elements of \mathbb{H} .
- c) Show that there is no larger subring $R' \supseteq R$ of \mathbb{H} that contains only integral elements.
- d) Show that the unit group R^{\times} consist of exactly the following 24 elements: $\pm 1, \pm i, \pm j, \pm k, \frac{1}{2}(\pm 1 \pm i \pm j \pm k)$